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Abstract: A constitutive model for simulating the compressive response of unreinforced brick masonry subjected to cyclic loading is pre-
sented and discussed. The developed formulations are consistent with the smeared rotating crack approach and may be easily implemented in
finite element codes for nonlinear analysis. The analysis approach includes different features such as nonlinear curves for capturing the shape
of the unloading/reloading branches, both in case of full unloading from the envelope curve and partial unloading/reloading. A unified model
for predicting the residual plastic strain as a function of the strain recovered during unloading is also proposed. Particular attention is paid to
the stiffness degradation occurring during reloading and to the prediction of the stress and strain values at which the reloading branch
intersects the envelope. The calibration of most of the proposed formulations is based on experimental results reported in the literature,
as well as from two uniaxial cyclic compression tests carried out within the present work. Finally, the model effectiveness is tested with
some verification examples. DOI: 10.1061/(ASCE)ST.1943-541X.0001961. © 2017 American Society of Civil Engineers.
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Introduction

In the last decades, the use of numerical nonlinear simulations for
predicting the response of masonry structures has become quite
common among engineers because of the increasing computational
power and processing capability of electronic devices. The analysis
methods generally implemented are based on two main approaches
named micromodeling and macromodeling. The former (Lourenço
and Rots 1997; Mehrabi and Shing 1997; Chaimoon and Attard
2007) consists of separately modeling the masonry components
and considering the failure mechanisms that characterize joints and
units. The latter (Gambarotta and Lagomarsino 1997; Lourenço et al.
1998; Vecchio 2000; Papa 2001; Facconi et al. 2014) considers
masonry as a continuum where the material properties are smeared
over a finite region of the structure in which stresses are sufficiently
uniform and a relation between the average stresses and strains is
established. Micromodeling provides a detailed description of local
behavior of masonry, but its high computational cost makes this
approach suitable for relatively small elements. On the contrary,
when the analysis of the entire structure response is more important
than the behavior of single structural elements, macromodeling ap-
pears to be more convenient, leading to a good compromise between
analysis accuracy and computation time (Rots 1988).

Macromodels require the implementation of constitutive stress-
strain laws that are able to represent the uniaxial compressive

response of masonry. In regards to masonry subjected to cyclic load-
ing, the literature reports a limited number of constitutive models
which cannot be easily generalized for the prediction of the
masonry cyclic compressive response. Subramaniam and Sinha
(1995) proposed analytical formulations for modeling the unloading
and reloading curves of brick masonry loaded both perpendicularly
and parallel to bed joints. This model represents an important
reference because its calibration is based on a significant amount
of experimental data resulting from tests on clay brick masonry
panels (Naraine and Sinha 1989b). In spite of this fact, the applicabil-
ity of the model cannot be unconditionally extended to any type of
masonry material. Eibl et al. (1996) formulated a model in which the
unloading curve is represented by an exponential relationship,
whereas the reloading path is approximated with a linear curve.
The model can be easily implemented, but the basic points used
to determine the unloading and the reloading curve are defined ac-
cording to the test results reported by Naraine and Sinha (1989a).
Moreover, when formulating the model, the authors make no men-
tion of the model behavior in case of partial unloading-reloading. The
more refined model proposed by Crisafulli (1997) is able to provide a
comprehensive description of the nonlinear path typically followed
by the unloading and the reloading curves. Unlike other models, the
Crisafulli model considers the case of partial unloading-reloading as
well as the response in case of accumulative damage due to small
cycle hysteresis. However, in order to get a prediction of the cyclic
response, the nine empirical coefficients used in the model equations
have to be initially calibrated and defined by considering the related
ranges of variation suggested by the author. More recently, Sima et al.
(2011) proposed a constitutive model whose material parameters are
obtained from the linear regression of the experimental data reported
by Naraine and Sinha (1989a). As in other models, the constitutive
law assumes a nonlinear unloading curve followed by a simple linear
reloading response. The model includes a rule for modeling the
general case of partial unloading-reloading, but the authors do not
provide a specific calibration of the model parameters because of
the lack of experimental information provided by literature.

Although the study of the dynamic behavior of masonry
structures has become ever more important for many application
fields, for example, in seismic engineering, a limited number of
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experimental studies on the cyclic compressive behavior of brick
masonry are available. The first detailed investigation was per-
formed by Naraine and Sinha (1989a, b), who tested 18 clay brick
masonry specimens loaded both perpendicularly and parallel to
mortar bed joints. The same authors (Naraine and Sinha 1991a)
also performed tests on half-scale clay brick panels subjected to
biaxial cyclic loading. The mean compressive strength of bricks
and mortar used by Naraine and Sinha to construct the test samples
were respectively equal to approximately 13.4 and 6.4 MPa. Later,
AlShebani and Sinha (1999) carried out uniaxial tests on masonry
panels made of sand-plast half brick units having a mean compres-
sive strength of 23.4 MPa, and mortar with a mean compressive
strength of 10.2 MPa. Again, the tests were conducted by loading
specimens parallel and normally to bed joints. All the previous
studies focused on the determination of the stability point and
the common point curves as well as the residual plastic strains that
characterize the compression cyclic response of masonry. Oliveira
(2003) performed cyclic tests on small stacked bond prisms made
with solid clay bricks (mean mortar compressive strength ¼
5.5 MPa) in order to get information on brittleness, energy dissi-
pation, and stiffness degradation. More recently, Galman (2012)
performed tests on specimens made of solid clay bricks and mortar
having a compressive strength of 18.7 and 6.8 MPa, respectively.
The research included single- and double-wythe brick panels
loaded perpendicularly to bed joints. Unlike all the previous re-
searches, Ispir and Ilki (2013) investigated the compressive cyclic
behavior of existent solid brick masonry by testing 15 panels ex-
tracted from different walls of historical houses. As typical for his-
torical materials, the bricks and mortar presented quite low mean
compressive strengths equal to 5.5 and 3.1 MPa, respectively.

This paper aims to propose an analytical model for predicting the
cyclic compressive response of brick masonry. In view of its imple-
mentation in the disturbed stress field model (DSFM) for unrein-
forced masonry (Facconi et al. 2014), the model is formulated in
the context of the smeared rotating crack approach. In order to obtain
a realistic representation of the actual material behavior, both the
reloading and the unloading curves have been modeled using suit-
able nonlinear curves. The calibration of the main model parameters
has been based on experimental data concerning different brick
masonry typologies. Partial unloading and reloading has also been
included to better capture the possible loading histories occurring
during seismic events. As proved by the verification examples re-
ported at the end of the paper, a reasonable prediction of themasonry
behavior can be obtained by implementing the proposed model with
the suggested default values of the basic parameters. Therefore, the
model may be a useful tool for easily obtaining a preliminary pre-
diction of the compressive behavior without performing experimen-
tal tests for its calibration. It is also noteworthy that the model has
been calibrated on the results of quasi-static cyclic tests and, more-
over, its formulations cannot be extended to the analysis of materials
subjected to a high number of load repetitions (fatigue analysis).

The model formulation is preceded by the presentation of the
results obtained from two uniaxial compression cyclic tests on solid
clay brick panels carried out at the University of Brescia. The data
provided by the test results have been used for the model calibration
together with those collected from the literature.

Cyclic Compression Tests on Masonry Panels

Test Specimen

Two masonry prisms with dimensions 780 × 510 × 245 mm3 were
built with solid clay brick units measuring 250 × 120 × 60 mm3.

The compression tests performed according to BS EN 772-1:
2011 (BSI 2011) on six brick specimens provided a normalized
mean compressive strength equal to 12.5 MPa [coefficient of varia-
tion ðCOVÞ ¼ 9%]. Bricks were laid on a running bond by using
alternated stretchers and headers, with the headers of each row cen-
tered on the stretchers of the row below. All samples contained 11
courses of bricks with a nominal mortar head and bed joint thick-
ness of 10 mm. The latter was prepared using a commercial ready-
mix mortar containing hydraulic lime, portland cement, and sand.
A total of 15 mortar prismatic specimens having dimensions 160 ×
40 × 40 mm3 were tested according BS EN 1015-11 (BSI 2007)
after more than 28 days from casting. The resulting mean cube
compressive and flexural strength were equal to 7.7 MPa (COV ¼
10%) and 2.4 MPa (COV ¼ 13%), respectively.

Before constructing the masonry panels, the clay bricks were
soaked in water for approximately 1 h until complete saturation.
To maintain uniform workmanship, the same mason built all the
samples. After construction, each specimen was cured for 28 days
by keeping it wet and covered with a polyethylene sheet. Two sam-
ples, named respectively MPC1 and MPC2, were tested 55 days
after construction.

Test Set-Up and Instrumentation

The specimens were tested under uniaxial loading by means of the
test arrangement depicted in Fig. 1. The masonry panel was placed
between a load distributor beam and a RC slab laid on the labo-
ratory strong floor immediately after leveling by a thin mortar layer.
A 6-mm-thick steel plate was fixed both at the top and at the bottom
of the specimen. The loading rig consisted of a steel reaction frame
anchored to the bottom surface of the strong floor and connected to
an electromechanical jack having a capacity of 1,000 kN. A steel
beam (2UPN400) hinged to the actuator allowed the transfer of
load to two Dywidag bars (Dywit S.p.A., Cusago, Milan, Italy)
passing through the floor and bolted to the loading beam. A steel
roller was positioned between the loading and the distributor beam
to concentrate the force along the vertical axis of the specimen. The
applied load was monitored by two load cells placed on the loading
beam and connected to the Dywidag bars.

Potentiometric transducers were used to measure axial and
lateral displacements on both sides of the specimen (Fig. 2). More
specifically, transducers VS1–VS2 and VS3–VS4 measured the
vertical deformations, whereas transducers HS1 and HS2 detected
the horizontal deformations. The gauge length was kept constant at
420 mm, for the axial deformation transducers, and 300 mm for the
lateral deformation transducers.

The two specimens were tested under cyclic loading at a con-
stant displacement rate of 0.01 mm=s in the loading and reloading
stage, and 0.05 mm=s in the unloading stage. An incremental strain
of approximately 0.1 × 10−3 in each cycle was generally adopted
to allow the loading curve to attain the envelope curve. The elec-
tronic speed control device of the thrust jack was unable to provide
stable control of the test once the peak load was achieved. There-
fore, it was not possible to detect the postpeak response of either
specimens.

Experimental Test Results

The compressive axial stress-strain curves obtained from the cyclic
tests are depicted in Fig. 3. The peak strengths (fm;p) exhib-
ited by specimens MPC1 and MPC2 were equal to 8.22 and
7.77 MPa, respectively. The strain detected at peak strength (εp)
was 1.59 mm=m for specimen MPC1 and 3.15 mm=m for speci-
men MPC2. Despite the two panels having similar geometrical and
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material properties, the response of specimen MPC1 appeared to be
stiffer than that exhibited by MPC2. In fact, the strain εp of the
former was 50% lower than that exhibited by the latter. On the con-
trary, the peak strength of specimen MPC1 was only 6% higher
than that of specimen MPC2.

The crack patterns of the two samples, observed at the end of the
test, presented similar features. As shown in Fig. 4, splitting cracks
due to the tensile failure of bricks occurred on both short sides of

the sample [Figs. 4(c and d)], whereas tensile cracks parallel to the
axial load were detected on the front and back side on bricks as well
as bed joints [Figs. 4(a and b)].

Seismic performance is frequently represented by the dissipated
energy. The energy density dissipated within each cycle (E), that is,
the area enclosed in the unloading-reloading cycle of the stress-
strain curve, is represented in Fig. 5 as a function of the normalized
strain at peak stress of each cycle (ε 0p), that is, the ratio between

Fig. 2. Schematic of the instrumentation (dimensions in millimeters)

Fig. 1. Loading set-up (dimensions in millimeters)
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strain at peak stress of each cycle and the strain at peak strength
of the overall response (εp). Fig. 5 highlights the progressive
increment of the dissipated energy for increasing values of ε 0

p.
Moreover, because of its higher deformability, the total energy dis-
sipated by specimen MPC2 was approximately 2.2 times higher
than that dissipated by specimen MPC1.

Compared with the specimen MPC2, the specimen MPC1 ex-
hibited a higher compressive stiffness and a lower dissipated energy
density. These results can be explained considering the damage pat-
tern presented by the samples at the end of the test. In spite of their
similar crack patterns, specimen MPC2 developed a higher number
of cracks that led to a reduced stiffness, as well as to a higher frac-
ture surface and, therefore, energy. Moreover, the axial stiffness
of specimen MPC2 was affected, especially in the initial stage
of the test, by existing cracks due to both material imperfections
and mortar shrinkage.

Model Formulation

The study herein reported is part of a broader research program
aimed to propose an improvement of the DSFM for unreinforced
masonry (DSFM-UM) (Facconi et al. 2014) that allows simulating
the reverse cyclic behavior of masonry structures. Thus, the model

Fig. 3. Compression stress (fm)-strain (εm) curves obtained from the cyclic tests on (a) specimen MPC1; (b) specimen MPC2

Fig. 4. Typical crack pattern at peak load: (a) front side; (b) back side; (c and d) short-side view

Fig. 5. Dissipated energy density (E) versus normalized strain at peak
strength of each cycle (ε 0

p)
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has been formulated in the context of smeared rotating cracks, and
is intended to be implemented within the existing formulations. The
comprehensive model, including constitutive laws representing
the cyclic behavior of masonry in tension, will be presented in a
future work together with the results of some nonlinear finite
element simulations of masonry structures under cyclic loading.

Envelope Curve

As shown by Naraine and Sinha (1989b), the envelope curve for
masonry subjected to axial cyclic compressive load can be reason-
ably represented by the monotonic stress-strain curve. The mono-
tonic relationship adopted here is subdivided into a prepeak and a
postpeak curve, which represent the compressive behavior before
and after the attainment of the peak strain εp. For the prepeak curve,
the model proposed by Hoshikuma et al. (1997) for concrete allows
the input of the initial elastic modulus of masonry. The postpeak
response is modeled by a simple parabolic curve that generally pro-
vides a suitable representation of the strength degradation occurring
for most masonry typologies. Thus, the overall envelope curve may
be described as

fm ¼ Em · εm ·

�
1 − 1

n

�
εm
εp

�
n−1�

for εm ≤ εp

fm ¼ fm;p ·

�
1 −

�
εm − εp
εu − εp

�
2
�

for εm > εp ð1Þ

where fm and εm = stress and the strain acting in the masonry, re-
spectively; εp and fm;p = strain at the peak and the corresponding
strength; and εu = ultimate strain at zero stress. The latter is not
generally easy to evaluate because experimental tests are often in-
terrupted before reaching the complete distress of the specimen.
Tests carried out by different researchers have shown that εu can
assume values even higher than 1.5–2 times εp. The parameter n ¼
Em=ðEm − EsecÞ is a function of both the initial elastic tangent
modulus Em and the secant modulus Esec ¼ fm;p=jεpj. The
envelope curve adopted here is consistent with that used in the
DSFM-UM to represent the monotonic compressive stress-strain
behavior of masonry. However, the formulation of the cyclic model
described subsequently can be easily adapted to different envelope
curve typologies equally able to represent the compressive behavior
of masonry.

Fig. 6 compares the cyclic stress-strain curves of specimen
MPC1, MPC2, and of some experimental tests reported in the lit-
erature (Naraine and Sinha 1989a; Galman 2012; Oliveira 2003),
with the related envelope curves based on Eq. (1). The parameters
implemented in the analytical model to fit the experimental data are
summarized in Table 1. It appears that the proposed model is gen-
erally able to provide a good representation of the experimental
data in both the prepeak and in the postpeak responses. Except
for the test carried out by Naraine and Sinha (1989a), the envelope
curves tend to exhibit a strength overestimation that will necessarily
affect the accuracy of the cyclic response predicted by the model.
This fact is shown by the simulation results reported in the “Model
Verification” section of the paper.

Plastic Offset Model

The plastic offset strain, εpl (i.e., the residual strain at the end of
unloading at zero-load level), represents the amount of irrecover-
able damage of composite material resulting from the loading and
unloading process. Therefore, εpl is a fundamental parameter for
determining the shape of the unloading path and for estimating
the degree of damage occurring in masonry during cycling.

The literature provides few models specifically developed for
predicting the plastic offset strain for brick masonry. Based on
the results of different experimental programs on brick masonry,
Naraine and Sinha (1989b), Subramaniam and Sinha (1995),
and AlShebani (2001) proposed empirical equations that allow
the calculation of εpl for loading perpendicular and parallel to bed
joints. The experimental results reported by those authors and by
other researchers (Galman 2012; Ispir and Ilki 2013), as well as
the plastic strains obtained from the two tests discussed previously
in this paper, have been here used for proposing a comprehensive
and more general formulation to predict the residual strain. The
proposed model aims at reducing the dependency on a single
set of experimental data and tests conditions that affect the afore-
mentioned empirical models reported in the literature. Fig. 7
reports the values of the normalized plastic strain (ε 0

pl¼εpl=εp)
and the corresponding normalized unloading strain (ε 0

un) (i.e., the
normalized strain detected on the unloading-reloading curve where
it intercepts the envelope curve) in comparison with the proposed
analytical model. The latter consists of the following parabolic
equation:

ε 0pl ¼ 0.235 · ðε 0unÞ2 þ 0.25 · jε 0
unj ð2Þ

which provides a best fit to the experimental data. A similar equa-
tion was proposed by Palermo and Vecchio (2003) for reinforced
concrete.

The proposed formulation represents a unified model derived
from uniaxial and biaxial tests carried out by loading specimens
both perpendicularly and parallel to bed joints. This assumption
is supported by the outcomes of the studies performed by Naraine
and Sinha (1989a, 1991a), who highlighted the reduced influence
of the loading direction on the residual plastic strains. Thus,
Eq. (2) is supposed to be suitable for evaluating the plastic strain
irrespective of the loading direction and the ratio between principal
stresses.

Unloading-Reloading Model

Unloading Curve
As pointed out by Naraine and Sinha (1989b), the curve represent-
ing the behavior of masonry in the unloading stage is typically non-
linear, and its shape depends on the strain level (εun) at which
unloading occurs. The unloading branch is represented by the ana-
lytical model proposed by Crisafulli (1997), the general formu-
lation of which is given as follows:

fm ¼ f1 þ ðf2 − f1Þ ·
B1 · χþ χ2

1þ B2 · χþ B3 · χ2
ð3Þ

where f1 and f2 are, respectively, the stresses defining the initial
and final point of the curve and χ ¼ ðεm − εunÞ=ðεpl − εunÞ. For
the unloading curve, the initial stress f1 is assumed equal to the
stress (fm;un) and the strain (εun) at onset of unloading, whereas
the stress f2 can be equal to 0, in the case of full unloading from
the envelope curve (Fig. 8), or to fm;ro in the case of partial un-
loading [Fig. 9(b)]. A typical representation of the unloading curve
is depicted in Fig. 8.

Three equations are used to determine the coefficients B1, B2,
and B3:

B1 ¼
E1

Es
; B2 ¼ B1 − B3; B3 ¼ 2 − E2

Es
ð1þ B1Þ ð4Þ

© ASCE 04017213-5 J. Struct. Eng.
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where Es ¼ fm;un=ðεun − εplÞ is the secant modulus calculated be-
tween the points (fm;un, εun) and (0; εpl), whereas E1 ¼ Eun and
E2 ¼ Eun;pl are the initial and the final tangent moduli. The latter
can be evaluated as follows:

Eun ¼ γun·Em; Eun;pl ¼
γpl;u·Em�
1þ εun

εp

�
e ð5Þ

The empirical coefficients γun ¼ 1.5, γpl;u ¼ 0.15, and e ¼ 2

have been determined from best fitting of the unloading curves re-
ported in the literature. Despite the parameter calibration per-
formed, some experimental results have shown that the proposed
coefficient γun could require an adjustment to better fit the exper-
imental response. In case such a modification is required, the value
of γun should be chosen in the range 1.5–3.

Table 1. Model Input Data Used in the Verification Case Studies

Case study Masonry type Em (MPa) fm;p (MPa) εp (%) εu (%)

Naraine and Sinha (1989b) Double wythe frogged clay bricks 9,000 5.23 6.96 15.00
Oliveira (2003) Single wythe solid clay bricks 6,000 29.10 8.80 14.40
Galman (2012) Double wythe solid clay bricks 15,000 9.70 2.90 —
Specimen MPC1 Double wythe solid clay bricks 8,800 8.25 1.60 —
Specimen MPC2 Double wythe solid clay bricks 7,400 7.95 3.20 —

Fig. 6. Comparison of the proposed envelope curve with the experimental hysteretic response: (a) Naraine and Sinha (1989b); (b) Galman (2012);
(c) Oliveira (2003); (d) Specimen MPC1; (e) Specimen MPC2

© ASCE 04017213-6 J. Struct. Eng.
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The slope of the initial (Eun) and final (Eun;pl) tangent to the
unloading curve, which are considered positive as shown in Fig. 8,
are representative of the response generally exhibited by most brick
masonry tests. However, some studies have shown that the value of
Eun may sometimes be negative because of creep and relaxation
phenomena occurring at the beginning of the reverse loading phase.
This effect, which is typical of quasi-static tests, is not expected to
occur when the structure is subjected to actual cyclic actions, for
example, earthquake or wind, and, therefore, it can be neglected
without significantly affecting the model accuracy.

Full Reloading Curve
The reloading stage begins when the compressive strain starts to
increase after complete or partial unloading. It is a well-known fact
that the reloading curve generally intersects the envelope curve at a
strain higher than that attained at the beginning of the unloading

phase (εun). This phenomenon is due to damage occurring in
the masonry because of the cyclic process. Different approaches
can be found in the literature for modeling this progressive damage
of the material. Seckin (1981) and Mander et al. (1988) proposed
models for concrete that define the reloading strain (εre), that is, the
intersection point between the envelope and the reloading curve,
and then adjust the reloading branch in order to intersect the
envelope curve at this point. In more detail, the model proposed
by Seckin allows determining the reloading branch by defining
the reloading stiffness as a function of the unloading strain. On
the contrary, the approach of Mander et al. (1988) defines a
new stress point on the reloading curve that is a function of the
previous unloading stress and of the stress at reloading reversal.
A nonlinear function is then used to connect the reloading path
to the envelope curve at an arbitrary value of the reloading strain.
Both Naraine and Sinha (1991a) and Eibl et al. (1996) suggested
models specifically developed for unreinforced masonry. The
former determines the reloading curve and the reloading strain
by using a series of focal points resulting from geometrical consid-
erations of the properties of the experimental curves. The latter for-
mulated a model in which the reloading branch is linear and its
intersection with the envelope curve is assumed to be a function
of the stress and strain at compression failure of masonry. Crisafulli
(1997) assumed the reloading strain to be proportional to the differ-
ence between the unloading and plastic strains by means of a linear
function depending on an empirical coefficient that has to be ex-
perimentally calibrated. The reloading stiffness is then calculated
as the unloading stress to reloading strain ratio.

The approach adopted herein to determine the reloading stress
and strain is based on the model proposed by Palermo and Vecchio
(2003). As shown in Fig. 9, the reloading strain turns out from
the intersection of the envelope curve with the following linear
relationship:

fm;re ¼ fm;ro þ Ere · ðεre − εroÞ ð6Þ
where Ere = reloading stiffness; fm;re and εre = reloading stress and
strain, respectively, resulting from the intersection of Eq. (6) with
the envelope curve [Eq. (1)]. Note that fm;ro and εro correspond to
the stress and strain at reloading reversal (partial unloading-
reloading response).

The reloading stiffness is provided by the following degrading
function:

Ere¼
βd·fm;un − fm;ro

εun − εro
ð7Þ

dependent on the damage factor βd, whose value is given by the
following functions:

βd ¼
1

1þ 0.20 · ε 00.5
rec

for jεmj < jεpj ð8Þ

βd ¼
1

1þ 0.45 · ε 00.2
rec

for jεmj ≥ jεpj ð9Þ

where ε 0rec ¼ ðεun−εroÞ=εp is the normalized recovery strain
(Fig. 9). When total unloading occurs [Fig. 9(a)] εro¼εpl. The
curves represented by Eqs. (8) and (9) are plotted in the damage
factor (βd)—normalized recovery strain (ε 0

rec) plots of Fig. 10. Note
that the proposed equations are compared with the damage factor
values calculated by considering a series of experimental results
including the cyclic tests (i.e., specimens MPC1 and MPC2)
carried out in the present research. A total of 74 and 20 datum points
have been collected for the prepeak and the postpeak stages,
respectively.

Fig. 7. Normalized plastic strain (ε 0
pl) versus normalized unloading

strain (ε 0
pl)

Fig. 8. Typical stress-strain unloading curve
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About the prepeak compressive behavior [Fig. 10(a)], the
analytical model shows a reasonably good correlation with the
experimental data despite the large scatter presented by some of
the experimental results [e.g., see data from Ispir and Ilki (2013)].
Because of the lower amount of experimental data and their larger
scatter, the model related to the postpeak stage [Fig. 10(b)] exhibits
a poorer correlation and consequently lower accuracy in predicting
the damage level of masonry. Hopefully the model will be further
improved as new data become available.

The linear representation of the reloading branch adopted by
other models reported in the literature is reasonable but not so
accurate compared with the actual cyclic response of masonry.
To better capture the actual response, a more refined nonlinear
curve with double curvature should be implemented. Again, the
Crisafulli’s model has been used and conveniently modified by in-
cluding the following boundary conditions in Eq. (3):
1. if εm ¼ εpl then fm ¼ 0;
2. if εm ¼ εpl then E1 ¼ Ere;pl;

3. if εm ¼ εre then fm ¼ fm;re with ðfm;re;εreÞ ¼�
Eq: ð3Þ
Ere · ðεm − εroÞ þ fro

;

4. if εm ¼ εre then E2 ¼ Ere;env, where the final reloading tangent
modulus Ere;env (Fig. 9) is provided by the following equation:

Ere;env ¼ maxð0.5 · Ere; ∂fm=∂εmjεm¼εreÞ ≤ Es for εre ≤ εp

Ere;env ¼ 0.5 · Ere ≤ Es for εre > εp ð10Þ
where fm = stress on the envelope curve according to Eq. (1).
Regarding the initial reloading tangent modulus Ere;pl, two va-
lues are proposed depending on the unloading condition. In the
case of full unloading-reloading [Fig. 9(a)], the value of Ere;pl
can be simply estimated as follows:

Ere;pl ¼ γre;pl·Eun;pl ≤ Es ð11Þ
On the contrary, in the case of full reloading from partial unload-

ing [Fig. 9(b)], the modulusEre;pl is given by the following relation:

Fig. 10. Damage factor for masonry in compression: (a) prepeak stage; (b) postpeak stage

Fig. 9. Typical stress-strain reloading curves: (a) full unloading-reloading; (b) full reloading from partial unloading

© ASCE 04017213-8 J. Struct. Eng.

 J. Struct. Eng., 2018, 144(2): 04017213 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i B

re
sc

ia
-S

is
te

m
a 

on
 1

2/
15

/1
7.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Ere;pl ¼ γre;pl·Es ·
ðB1 þ 2χroÞ · ð1 þ B2χro þ B3χ2

roÞ − χro · ðB1 þ χroÞ · ðB2 þ 2B3χroÞ
ð1 þ B2χro þ B3χ2

roÞ2
≤ Es ð12Þ

in which B1, B2, B3, and Es are the same coefficients calculated for
the unloading branch [Eq. (4)], whereas χro ¼ ðεro−εplÞ=
ðεun−εplÞ. The suggested value of the coefficient γre;pl ¼ 1.3
has been obtained from best fitting of experimental data.

The reloading branch is still governed by Eqs. (3) and (4), by
assuming the moduli Ere;pl, Ere;env, and Ere in place of E1, E2, and
Es, respectively.

Reloading Stiffness
The reloading stiffness Ere considers the progressive damage of
masonry due to cyclic loading. Tests performed on concrete
(Karsan and Jirsa 1969; Hsu 1981) and masonry (Naraine and
Sinha 1989a) specimens demonstrated that the cyclic compression
stress-strain curves have a locus of common points resulting from
the intersection between the unloading and the reloading branch.
When stresses above the common points are applied, additional
strains are experienced by the specimen. On the contrary, if the
specimen is repeatedly reloaded and unloaded after having
achieved the common point, the reloading stiffness reduces until
the hysteresis cycles go into a loop and no degradation is then ob-
served. The common points formed by the stable loops are referred
to as stability points. In the proposed model, the stress and the strain
corresponding to the common point are respectively named as fint
and εint (Fig. 9). In cases where the stress fint goes below the sta-
bility curve, that is, the locus of the stability points, the reloading
stiffness (Ere) must be incremented and adjusted until fint equals
the stability stress fstab. Naraine and Sinha (1991b) and AlShebani
and Sinha (1999) performed tests for estimating the value of the
stability stress for masonry loaded parallel and perpendicularly
to bed joints. Based on those results, a unique model has been cali-
brated to get a more general equation for the stability curve, inde-
pendent of the loading direction. The proposed relationship has
been obtained by rearranging the Smith and Young (1955) law
for concrete under monotonic loading. The resulting equation in
normalized form can be defined as

fstab
fm;p

¼ 1.03 · ε 0
m · eð1−ε 0m=0.61Þ with fstab ≤ fint ð13Þ

A comparison between the proposed model and experimental
data reported by literature is reported in Fig. 11. Considering
the quite high value of the coefficient of determination (R2 ¼
0.88), Eq. (13) appears to be able to provide a good fitting of
experimental data.

Eq. (13) can be applied to masonry irrespective of the direction
of compressive stresses with respect to bed joints. The model as-
sumes that the stiffness degradation occurs only if the strain
achieved by the reloading path exceeds the strain εint.

Partial Unloading/Reloading
The literature provides few experimental data regarding the cyclic
compressive behavior of masonry when partial unloading/reloading
occurs. On the contrary, some authors proposed models for con-
crete that consider the partial loadings from the full unloading/
reloading curves or the case of partial unloading followed by
partial reloading to strains higher than the previous maximum un-
loading strain. Here, the model suggested by Palermo and Vecchio
(2003) for concrete has been used and adapted to represent the par-
tial unloading/reloading response of masonry. This assumption

represents a proposal that should be validated once experimental
data about partial unloading/reloading of masonry specimens sub-
jected to axial compression will be available in literature.

As shown in Fig. 12, the partial unloading/reloading path fol-
lows different rules depending on the values of the partial unload-
ing stress and strain (f�m;un; ε�un) that characterize each small cycle.

If ε�un ≥ εint, material damage accumulated in the partial
unloading/reloading loop is completely neglected and, therefore,
the material behavior can be represented with the curves depicted
in Fig. 12(a). Five branches are required to completely define the
depicted model. Curve A represents the full unloading starting from
the unloading strain (εun) to the plastic offset (εpl), and is evaluated
from Eqs. (3)–(5). The unloading curve is followed by curve B de-
scribed by Eq. (3) combined with Eqs. (6)–(11). If unloading takes
place from a strain lower than the previous maximum strain (ε�un),
then curve C is obtained. The latter is represented by the aforemen-
tioned relations for full unloading except for the values of the un-
loading stress and strains that have to be updated by considering the
corresponding values for the current hysteretic loop. Curve D, used
here to represent the response in the case of reloading from partial
unloading, results from the same relationships governing curve B,
except for the initial (f�m;ro; ε�ro) and final (f�m;un; ε�un) stress-strain
values. Once curve D reaches the previous unloading point
(f�m;un; ε�un) and the strains are increased to values higher than
ε�un, curve E is considered. This curve follows the same path of
the reloading branch B defined after first unloading (curve A).
Therefore, it is assumed that damage experienced by masonry dur-
ing the first unloading phase is completely retained.

If ε�un ≥ εint, material damage due to repeated unloading and re-
loading is taken into account by the model. As shown in Fig. 12(b),
the procedure adopted to determine branches A, B, and C is the
same as previously discussed for the case ε�un < εint. Again, the par-
tial reloading curve D is evaluated by the equations governing full
reloading but, on the contrary, coefficient β used to determine the

Fig. 11. Normalized stress-strain curve for determining stability point
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reloading stiffness Ere and the related reloading stress fre and strain
εre on the envelope curve is calculated [see Eqs. (8) and (9)] as-
suming ε 0rec ¼ ðε�un−ε�roÞ=εp. Further partial unloading/reloading
cycles starting from new values of the unloading strains ε�un lower
than εre will be obtained according to the previous procedure after
having updated the values of the intersection strain (εint ¼ ε�int) and
stress (fint ¼ f�int).

One should observe that the residual plastic strain εpl is always
considered constant unless the compressive strain εm exceeds the
reloading strain εre on the envelope curve.

Model Verification

The proposed model is used to predict the response of some exper-
imental tests involving solid brick masonry panels subjected to uni-
axial compressive cyclic loading. In more detail, the analytical
procedure previously discussed has been implemented in a finite
element program (Wong et al. 2013), which has been used to pre-
dict the response of each test.

As shown in Fig. 13, the simulations included the experimental
tests carried out by Naraine and Sinha (1989b), Galman (2012), and
Oliveira (2003), as well as specimen MPC2 tested in this research.
All the predictions assumed the strains at the onset of the unloading
curves as the reverse point for the analytical model. Moreover, the
same parameters of the envelope curves reported in Table 1 were
used as input data for the proposed model. Table 2 compares the
energy density dissipated within each cycle by the test specimens
(Eexp) with that (Ean) resulting from the analytical simulation.
The relative error reported in the table is evaluated as Err ¼
ðEan − EexpÞ · 100=Eexp.

The simulation of the test performed by Naraine and Sinha
(1989b), on a specimen loaded perpendicularly to bed joints,
provides a good prediction of the actual experimental response
[Fig. 13(a)]. The adopted value of the initial unloading modulus
Eun seems to properly fit the initial slope of the experimental
unloading curves. The model proposed for estimating plastic strains
provides strain values quite close to the real ones. As shown
in Fig. 13(a) and confirmed by data reported in Table 2, the shape

of the unloading and reloading curves causes an overestimation of
the dissipated energy ranging from 5 to 63%. In spite of this, the
overall approximation of the experimental response is satisfactory.

Unlike the previous case study, the experimental test carried
out by Galman (2012) is limited to the prepeak behavior of the
material. The analytical prediction [Fig. 13(b)] is quite accurate
and, except for the first loading cycle, the relative error related
to the prediction of the dissipated energy ranged from −4 to
þ37% (Table 2).

The test performed by Oliveira (2003) [Fig. 13(c)] is the only
example here available including loops characterized by reloading
after partial unloading from the envelope curve. All the predicted
unloading and reloading branches seem to be consistent with the
experimental ones in spite of the not excellent estimation of
the stress corresponding to the strain at the onset of reloading of
the second and third cycle. The predicted and the experimental dis-
sipated energy is found to be very similar (Table 2).

The cyclic curves resulting from the simulation of the specimens
MPC1 and MPC2 are depicted in Figs. 13(d and e). In spite of the
not excellent estimation of the response at the onset of unloading,
the value of the coefficient γun has been kept equal to the default
value 1.5. Note that the latter is equal to the maximum value sug-
gested by Crisafulli (1997) to get a realistic representation of the
masonry behavior at unloading. Because of the better prediction of
the plastic offset strain, the unloading curves exhibited by the speci-
men MPC2 [Fig. 13(e)] resulted to be more consistent with the ex-
perimental response than those observed for the Specimen MPC1
[Fig. 13(e)]. The reloading curves related to the Specimen MPC1
appeared to be quite consistent with the corresponding experimen-
tal response. On the contrary, the inability of the envelope curve to
simulate the considerable stiffness degradation presented by the
specimen MPC2 led to a not good estimation of the reloading
response. As expected, compared with the experimental response,
the predicted dissipated energy related to the specimen MPC1
was underestimated (i.e., Err ranged from −44 to −6%) whereas
the energy dissipated by the specimen MPC2 was overestimated
(i.e., Err ranged from þ15 to þ55%) (Table 2).

All the predictions have in common the same drawback regard-
ing the determination of the intersection between the reloading

Fig. 12. Partial unloading/reloading model for (a) ε�un < εint; (b) ε�un ≥ εint
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Fig. 13. Simulation of cyclic compression tests by the proposed model: (a) Naraine and Sinha (1989b); (b) Galman (2012); (c) Oliveira (2003);
(d) specimen MPC1; (e) specimen MPC2
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and the unloading path, often referred to as the common point.
More specifically, the common point is generally overestimated
in the prepeak stage and underestimated in the postpeak response.
However, considering the overall good quality of the predictions
obtained, the aforementioned drawback appears not to be of pri-
mary importance.

Finally, the intersection of the reloading branch with the
envelope curve is not always well approximated in the performed
simulations. This fact is directly related to the adopted
envelope model that does not perfectly fit the experimental curves
(Fig. 6).

An additional simulation has been performed to assess the abil-
ity of the model to predict the progressive stiffness degradation
resulting from repeated cycles of full unloading and reloading at
maximum strain not lower than the intersection strain εint. The
experimental test performed by AlShebani and Sinha (1999) to
determine the stability points has been used here as a reference
example [Fig. 14(a)]. The parameters used to define the envelope
curve are reported in Fig. 14(a). To better highlight the prediction
results, the comparison of the analytical response with the exper-
imental curve has been limited to strains ranging between 0.004
and 0.0092. As shown in Fig. 14(b), the actual unloading paths
are not well captured by the proposed model that tends to consid-
erably underestimate the unloading stiffness. This fact is mainly
due to the slope of the actual curve at the onset of unloading,
whose value is unusually negative, contrary to the assumptions of
the proposed model [Eq. (5)]. Despite this deficiency, the analyti-
cal model provides a reasonable simulation of the repeated partial
unloading/reloading cycles and gives a good prediction of the sta-
bility stress value.

Conclusions

This paper presents a new constitutive model for simulating the
compressive behavior of brick masonry subjected to cyclic loading.
The relationships implemented have been formulated in terms of
average stresses and strains consistent with the typical analysis ap-
proaches based on the smeared crack concept. To represent unload-
ing and reloading, the nonlinear curves included in the model
proposed by Crisafulli (1997) have been modified in order to obtain
a more generalized model suitable for different brick masonry ty-
pologies. The novel features introduced herein can be summarized
as follows:
1. An empirical model depending on the normalized strain at

the onset of unloading is proposed for predicting the instanta-
neous value of residual plastic strain. The formulation has been
calibrated by nonlinear regression analysis of several data col-
lected from the literature concerning compression cyclic tests on
different types of brick masonry specimens.

2. The unloading response has been modeled by a nonlinear rela-
tionship, starting from the envelope curve, whose shape can
be controlled by changing the initial and final tangent moduli.
The latter can be estimated by simple relationships specifically
calibrated from regression of experimental data provided in the
literature.

3. To provide an accurate representation of the reloading response,
a double-curvature law has been implemented. Unlike similar
models, the reloading curve depends on a reloading stiffness
parameter that, in turn, results from a degrading function that
is able to account for the progressive damage of masonry
due to cyclic loading. A linear relationship having a slope equal
to the reloading stiffness has been used to determine the point of
intersection between the reloading and the envelope curve. AllT
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the parameters included in the formulations have been experi-
mentally calibrated.

4. A model for considering partial unloading and reloading has
been also proposed and implemented.
The ability of the model to predict the cyclic compressive re-

sponse of brick masonry has been established by simulating differ-
ent experimental tests on masonry panels. All the simulations
agreed reasonably well with the experimental results.
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Notation

The following symbols are used in this paper:
Ean = analytical energy density dissipated within each cycle;
Eexp = experimental energy density dissipated within each

cycle;
Em = initial elastic tangent modulus;
Ere = reloading stiffness;

Ere;env = final tangent stiffness of the reloading curve;
Ere;pl = initial tangent stiffness of the reloading curve;
Esfm;un=ðεun−εplÞ = secant modulus referred to the unloading

branch;
Esec ¼ fm;p=jεpj = secant modulus referred to the envelope

curve;
Eun = initial tangent stiffness of the unloading curve;

Eun;pl = stiffness at zero stress after total unloading;
fm = compressive stress of masonry;
f 0
m = normalized compressive stress of masonry;

fm;int = stress at the intersection between the unloading and
reloading branch (common point);

f�m;int = stress at the intersection between the partial unloading
and reloading branch;

fm;p = stress at peak of the envelope curve;
fm;re = stress at the intersection between the reloading and the

envelope curve;
fm;ro = stress at onset of reloading;
f�m;ro = stress at onset of partial reloading;
fm;un = stress at onset of unloading;
f�m;un = stress at onset of partial unloading;
fstab = stress on the stability curve;
βd = damage factor;
εint = strain at the intersection between the unloading and

reloading branch (common point);
ε�int = strain at the intersection between the partial unloading

and reloading branch;
εm = compressive strain of masonry;
ε 0m = normalized strain of masonry;
εp = strain at peak of the envelope curve;
ε 0p = normalized value of the strain at peak of each cycle;
εpl = plastic offset strain;
ε 0
pl = normalized plastic offset strain;
εre = strain at the intersection between the reloading and the

envelope curve;
ε 0rec = normalized recovery strain;
εro = strain at onset of reloading;
ε�ro = strain at onset of partial reloading;
εu = ultimate strain of masonry;
εun = unloading strain;
ε 0
un = normalized unloading strain at the intersection between

the envelope and the loading/reloading curve; and
ε�un = strain at onset of partial unloading.
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