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a b s t r a c t 

This work presents a novel numerical model based on the use of coupling finite elements to simulate 

the behavior of steel fiber reinforced concrete (SFRC) with a discrete and explicit representation of steel 

fibers. The material is described as a composite made up by three phases: concrete, discrete discontinu- 

ous fibers and fiber-matrix interface. The steel fibers are modeled using two-node finite elements (truss 

elements) with a one-dimensional elastoplastic constitutive model. They are positioned using an isotropic 

uniform random distribution, considering the wall effect of the mold. A non-rigid coupling procedure is 

proposed for modeling the complex nonlinear behavior of the fiber-matrix interface by adopting an ap- 

propriate constitutive damage model to describe the relation between the shear stress (adherence stress) 

and the relative sliding between the matrix and each fiber individually. An isotropic damage model in- 

cluding two independent scalar damage variables for describing the concrete behavior under tension and 

compression is considered. To increase the computability and robustness of the continuum damage mod- 

els used to simulate matrix and interface behavior, an implicit-explicit integration scheme is used. Nu- 

merical examples involving a single fiber and a cloud of fibers are performed. Comparisons with exper- 

imental results demonstrate that the application of the numerical strategy for modeling the behavior of 

SFRC is highly promising and may constitute an important tool for better understanding the effects of 

the different aspects involved in the failure process of this material. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, it is well known that the addition of a small volume

f steel fibers may increase the ductility and toughness of cemen-

itious matrices ( Bentur and Mindess, 2007 ). The role played by

bers is most obvious after matrix cracking has occurred, as fibers

ffer resistance to crack propagation. As described by Voo and Fos-

er (2003) , for plain concrete, after matrix cracking, the tensile

tress immediately decreases. However, after the addition of a cer-

ain volume of steel fibers and after matrix cracking, the fibers are

ble to maintain a certain load bearing capacity, avoiding an abrupt

ailure of the composite. In addition, the crack widths are less than

hose of plain concrete ( Deluce, 2011 ). Therefore, the main benefits

f the addition of steel fibers in cementitious matrices are directly

elated to their ability to transfer stresses across cracks. 

According to Bentur and Mindess (2007) this process of stress

ransfer depends on the internal structure of the composite and
∗ Corresponding author. 
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he main factors that influence the composite’s behavior are (i) the

tructure of the bulk cementitious matrix, (ii) the shape and distri-

ution of the fibers and (iii) the fiber-matrix interaction. 

Although the application of Steel Fiber Reinforced Concrete

SFRC) has increased in the last years, being very attractive in

any structures, such as tunnel linings, bridges, pavements, and

ipes, there remains a lack of numerical models for simulating its

ehavior that consider the contribution of each component (fibers,

atrix and fiber-matrix interaction) in a fully independent way. 

Several approaches have also been proposed for modeling the

ehavior of SFRC. Continuum models for SFRC have been devel-

ped using results of structural members tested in laboratories,

uch as 3- and 4-point bending beams and slabs ( S.K. and Ra-

aswamy, 2002 ). In some of these models, stress-strain relations

re developed from the inverse analysis of the laboratory test re-

ults. These models are very limited because they are only able to

eproduce the same conditions applied in the laboratory tests for

pecific structural members. Moreover, this type of model is highly

xpensive due to the large number of tests required to calibrate
he model. 

https://doi.org/10.1016/j.ijsolstr.2018.09.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2018.09.028&domain=pdf
mailto:luis.bitencourt@usp.br
https://doi.org/10.1016/j.ijsolstr.2018.09.028
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As an alternative approach, various analytical models ( Lee et al.,

2012; 2011; Rolf et al., 2013; Zhan and Meschke, 2014 ) were also

proposed and implemented in computational programs. An inter-

esting model called Diverse Embedment Model (DEM) ( Lee et al.,

2011 ) has been recently developed in order to describe the tension

behavior of SFRC. The DEM considers the effects of the fiber geom-

etry, the fibers’ distribution and orientation, characteristics of the

single pullout response and the influence of the structural member

dimensions. 

Models based on mixture theory have also been developed

( Manzoli et al., 2008; Mora et al., 2011; Vrech et al., 2016 ). In

these models, the composite stresses are obtained by summing the

stresses of each constituent, which are weighted according to their

corresponding volumetric participation. Manzoli et al. (2008) and

Mora et al. (2011) use a Continuum Strong Discontinuous Approach

(CSDA) for modeling the failure behavior of the composite, while in

the model proposed by Vrech et al. (2016) , a continuum (smeared

crack) formulation, based on the microplane theory is applied. 

Recently, various studies have focused on the development of

models that include a discrete treatment of fibers. An explicit rep-

resentation is adopted in some models ( Pros et al., 2012; Cunha

et al., 2011; 2012; Fang and Zhang, 2013; Kang and Bolander, 2015 ),

whereas in other models, only interaction forces are considered to

account for the presence of the fibers ( Radtke et al., 2010; 2011;

Etse et al., 2012; Caggiano et al., 2012 ). This type of approach is ap-

pealing because the mechanical response of this material is highly

dependent on both the distribution of the steel fibers and the in-

teraction of each fiber with the cementitious matrix. In addition,

these models are very useful for considering factors, such as the

casting procedure, vibrations and wall effects introduced by the

formwork ( Švec et al., 2014 ). Covering all these cases using only

experimental investigations would be very expensive. Hence, a nu-

merical model with a discrete treatment of the fibers seems to be

a natural way to simulate the failure behavior of this material. 

In discrete models based on the finite element method with an

explicit representation of the fibers, non-matching meshes are of-

ten considered between the cloud of steel fibers and cementitious

matrix (i.e., the meshes of the cementitious matrix and fiber cloud

are generated in a completely independent way). Then, a coupling

procedure is applied to couple these independent overlapping

meshes. Usually, a rigid coupling (perfect adherence) is applied

and the fiber-matrix interaction is included in the constitutive

model (stress x strain relation) adopted to describe the behavior

of the fibers ( Pros et al., 2012; Cunha et al., 2011; 2012 ). In turn,

this relation is obtained through analytical expressions deduced

from pullout tests, as for example, the expressions proposed by

Laranjeira (2010) which are deduced from pullout tests carried out

by Laranjeira et al. (2010a,b) . In Radtke et al. (2011) , the nonlinear

behavior of the fiber-matrix interaction is described by the model

proposed by Hartig et al. (2008) . 

In the literature, many numerical models have been pro-

posed for modeling the failure process of SFRC based on the

continuous and discontinuous approaches. In the model pro-

posed by Radtke et al. (2011) , the matrix behavior is described

by an isotropic damage model with an exponential softening

law. This damage model is equipped with a simple regular-

ized fracture energy model (details can be found in Baz ̌ant and

Oh (1983) ) and with the gradient-enhanced damage model pro-

posed by Peerlings et al. (1996) to avoid the mesh depen-

dence. Damage models with similar approaches were also em-

ployed in the researches developed by Radtke et al. (2010) and

Pros et al. (2012) . A heuristic crack model with joint elements is

adopted by Parés (2011) . In Etse et al. (2012) , the failure behavior
f SFRC is evaluated at both the macro and mesoscale levels of

bservation. These authors employ a discrete crack formulation

ased on the use of zero-thickness interface elements proposed

y Carol et al. (1997) for plain concrete. A failure criterion de-

ned in terms of the normal and shear stress components act-

ng on the joint plane is adopted. For the pre-peak regime, a lin-

ar elastic model is considered, while the post-peak is formu-

ated in terms of the fracture energy release under failure modes

 and/or II. Analytical expressions proposed by Soroushian and

ee (1990) are employed to define the number of crossing fibers

er interface and the respective orientation factor. In the model

roposed by Zhan and Meschke (2016) , the failure process of SFRC

s described using finite elements with high aspect ratio developed

y Manzoli et al. (2012) . 

A few 3D numerical models are available in literature for mod-

ling SFRC. Parés (2011) proposes a 3D extension of the formula-

ion developed by Pros et al. (2012) . However, for all the numeri-

al examples performed, the failure pattern exhibits only one crack

nd to define the constitutive model for each fiber, the angle be-

ween the fiber and the failure pattern must be known beforehand.

or the 3D model proposed Cunha (2010) , only experiments with

 previously defined fracture plane have been analyzed. 

As an alternative to standard finite element formulations,

adtke et al. (2011) propose a model based on Partition of Unity Fi-

ite Element Method (PUFEM). Thus, the presence of discrete fibers

s considered employing the partition of unity property of finite el-

ment shape functions, without explicitly meshing them to ensure

umerical efficiency. Lattice models have also been developed as

n alternative for modeling fiber reinforced cement composites. In

he model proposed by Kang et al. (2014) , fibers can be positioned

reely in the computational domain, irrespective of the background

attice representing the matrix phase. 

This paper proposes a new approach for modeling the fail-

re processes of SFRC with a discrete and explicit representation

f steel fibers. The material is described as a composite made

p by three phases: concrete, discrete discontinuous fibers and

ber-matrix interface. A special coupling finite element developed

y Bitencourt Jr. et al. (2015) is employed to couple the inde-

endent overlapping meshes of the matrix (2D or 3D solid el-

ments) and a cloud of steel fibers. Two-node finite elements

nd elastoplastic constitutive model are used for modeling the

teel fibers. The fibers are generated and positioned randomly us-

ng an isotropic uniform random distribution, taking into account

he wall-effect of the mold. The complex nonlinear behavior of

he interaction between concrete and fibers is modeled through

 damage constitutive model and the non-rigid coupling proce-

ure proposed by Bitencourt Jr. et al. (2015) . An isotropic damage

odel with two independent scalar damage variables proposed by

ervera et al. (1996) is used to describe the behavior of the con-

rete. In addition, an implicit-explicit integration scheme is em-

loyed to increase the robustness of the constitutive models and

o accelerate the nonlinear convergence. Recently, this approach

as been applied as an alternative methodology to represent rebars

nd their bond-slip behavior against concrete ( Bitencourt Jr. et al.,

018 ). 

The remainder of this paper is organized as follows. The strat-

gy employed to represent steel fibers with a discrete and ex-

licit representation is presented in Section 2 . Section 3 presents

he continuum damage model and the implicit-explicit integration

cheme used to represent the concrete behavior. In Section 4 three

umerical analyses are conducted in order to validate the proposed

pproach. Finally, a summary and the main conclusions are pre-

ented in Section 5 . 
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Fig. 1. Coupling procedure for non-matching finite element meshes: (a) definition of the problem; (b) process of identification of the nodes that will compose the CFEs; (c) 

creation and insertion of the CFEs; (d) detail of coupling in overlapping meshes; and (e) detail of coupling in non-overlapping meshes. 
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. Numerical model for steel fiber reinforced concrete 

.1. Discrete and explicit representation of steel fibers 

The numerical model proposed for steel fiber reinforced con-

rete with a discrete and explicit representation of steel fibers is

ased on the use of Coupling Finite Elements (CFEs) developed by

itencourt Jr. et al. (2015) . 

Fig. 1 illustrates the most general case, i.e., when a concurrent

ultiscale model is adopted. In this problem, the coupling tech-

ique is employed to couple both the interface between the sub-

omains �1 (mesoscale) and �2 (macroscale), defined by �1 , 2 =
1 ∩ �2 (non-overlapping meshes), and to describe the interac-

ion between concrete and steel fibers of the region discretized

n mesoscale (overlapping meshes). As the focus of this paper is

o present how to consider the presence of fibers individually, the

ggregates are not explicitly represented. 

The strategy proposed can be summarized as follows: 

1. Discretization of the macroscale and mesoscale regions based

on the geometry of the structural member ( Fig. 1 (b)); 

2. Identification of the loose nodes at the common boundary in-

terface of the subdomains and in the region where a mesoscale
approach is adopted (here represented by the red nodes in

Fig. 1 (b)); 

3. Definition and insertion of CFEs to couple the subdomains

and to describe the interaction between concrete and fibers

( Fig. 1 (c)). 

4. Assembly of the CFEs in the system of equations of the prob-

lem, according to the law that describes the interaction be-

tween the independent meshes. 

According to Bitencourt Jr. et al. (2015) , each CFE has the same

odes of an underlying finite element of the existing mesh and

n extra node, coinciding with the loose node (herein designated

oupling node) that belongs to its domain. As a consequence, the

FEs overlap the finite elements of the original mesh containing

he coupling nodes. 

Fig. 1 (d) shows an example of coupling between overlapping

eshes, where two coupling finite elements CF E 1 = { i, j, k, c 1 } and

F E 2 = { j, l, k, c 2 } were used, whose nodes c 1 , and c 2 , respectively

re their coupling nodes. At the common boundary interface, to

ach loose node, a coupling finite element is also inserted to con-

ect the non-overlapping meshes, using as base an existing fi-

ite element, which has one face (for 3-node triangles defined
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Table 1 

Pseudo code of the algorithm developed for generating steel fibers. 

Read input data 

Calculate N f 
for n = 1 : N f 

Calculate the C.G. of i th fiber X̄ = ( ̄x i , ̄y i , ̄z i ) 

Check if the C.G. is valid 

Calculate the coordinates of the i th fiber end-nodes X̄ 
e = 

(
x e 

i 
, y e 

i 
, z e 

i 

)
Check if the end-node coordinates are valid 

end for 

Save output file 
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Fig. 2. 2D and 3D CFEs based on linear interpolation functions for displacements: 

3-noded triangular element with the C node and 4-noded tetrahedral element with 

the C node . 

Fig. 3. Influence length of the coupling node. 
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by two nodes) along at the common boundary interface. An ex-

ample is shown in Fig. 1 (e), where the coupling finite element

F E 3 = { m, n, p, c 3 } is introduced, with c 3 being the coupling node.

Note that for each loose node, one coupling finite element is re-

quired. 

The CFEs share nodes with both non-matching meshes and are

used to ensure the compatibility of displacements and to transfer

interaction forces between non-matching meshes. The interaction

forces between the non-matching meshes may also be described

by an appropriate constitutive model applied in the CFEs. This is

one of the major advantages of the technique, since a rigid (full

compatibility of displacements) or non-rigid (degrading interface)

coupling can be considered easily. Thus, the use of this technique

for modeling reinforced composite is very appealing, since rein-

forcement, matrix and reinforcement-matrix interface can be mod-

eled independently. 

Fig. 1 (c) illustrates the final configuration of the mesh, with

all the CFEs. After the application of the coupling procedure, the

global internal force vector and the stiffness matrix can be written

as: 

F int = A 

nel C 
e =1 

(F int 
e ) C ︸ ︷︷ ︸ 

concrete elements 

+ A 

nel SF 

e =1 
(F int 

e ) SF ︸ ︷︷ ︸ 
steel fibers 

+ A 

nel CFE 

e =1 
(F int 

e ) CF E ︸ ︷︷ ︸ 
coupling elements 

(1)

K = A 

nel C 
e =1 

(K e ) C ︸ ︷︷ ︸ 
concrete elements 

+ A 

nel SF 

e =1 
(K e ) SF ︸ ︷︷ ︸ 

steel fibers 

+ A 

nel CFE 

e =1 
(K e ) CF E ︸ ︷︷ ︸ 

coupling elements 

(2)

where A stands for the finite element assembly operator, the first

and second terms of Eqs. 1 and 2 are related to the finite elements

employed to represent the concrete and steel fibers, respectively,

and the third term is tied to the introduction of the CFEs. Note that

the coupling procedure does not introduce any additional degree

of freedom in the global problem and can be regarded as a pre-

processing stage. 

2.2. Fiber distribution and orientation in concrete 

From the fiber content and the geometrical properties of both

the steel fiber and concrete specimen, a cloud of fibers is generated

using an isotropic uniform random distribution, according to the

algorithm proposed by Cunha (2010) . Steel fibers are represented

by straight lines for both straight and hooked fibers with a null

thickness. It is also worth to mention that the use of straight lines

for hooked fibers is feasible, since in this work the effect of the

end-hooked is considered in the bond-slip law adopted to describe

the fiber-matrix interaction. 

Table 1 summarizes the algorithm developed in the form of

pseudo code. The first step comprises the initialization of variables

to be used for generating the desired cloud of fibers (read input

data). Based on these data, the number of steel fiber to be gener-

ated is calculated, which will define the number of loops neces-

sary for generating fiber by fiber, each position and orientation in-

side specimen’s domain. When at least one of the fiber end-nodes

violates the boundary conditions, a new fiber orientation is gener-

ated up to a predefined number of attempts. With this procedure,
 fiber alignment near the boundary surfaces is obtained, taking

nto account the wall effect of the mold. Finally, after a number

f loops equal to N f is achieved, the fibers end-node coordinates

re saved into an output file, to be further imported by the pre-

rocessor program. 

Due to the high computational cost of 3D analyses, many anal-

ses in this work are performed in 2D. In these cases, after the

eneration of a cloud of fiber in 3D, the third components of the

artesian axis are suppressed to account only the projection of

ach fiber length on the plane of analysis. 

.3. Coupling scheme for non-matching meshes 

The scheme proposed by Bitencourt Jr. et al. (2015) to couple

on-matching meshes is applied in this work to couple overlap-

ing non-matching meshes of the concrete and a cloud of fibers.

hus, concrete-steel fiber interaction is described by the use of

FEs. To understand the interaction force introduced by these el-

ments, let us consider a standard isoparametric finite element of

omain �e , with number of nodes equal to nn , and shape func-

ions N i (X )(i = 1 , nn ) , which are defined for the material points

 ∈ �e , such that the displacement U at any point in its domain

an be approximated in terms of its nodal displacements D i (i =
 , nn ) , as follows: 

 (X ) = 

nn ∑ 

i =1 

N i (X ) D i . (3)

As defined by Bitencourt Jr. et al. (2015) , the CFE is a finite

lement which has the above described nodes of the standard

soparametric finite element as well as an additional node, nn + 1 ,

alled coupling node ( C node ), situated at the material point X c ∈ �e ,

s illustrated in Fig. 2 . In this figure, the additional node is the

oose node of the bar that belongs to the domain of its respec-

ive element of concrete. For these cases, the C node are the fourth

nd fifth node of the triangular and tetrahedral coupling finite el-

ments, respectively, as shown in Fig. 2 . 
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Fig. 4. Bond-slip relation adopted to described the fiber-matrix interaction. 
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The relative displacement, [[ U ]], defined as the difference be-

ween the displacement of the C node and the displacement of the

aterial point X c , can be evaluated using the shape functions of

he underlying finite element, N i (X c )(i = 1 , nn ) , as follows: 

[ U ]] = D nn +1 − U (X c ) = D nn +1 −
nn ∑ 

i =1 

N i (X c ) D i = B e D e , (4)

here the matrix B e = [ −N 1 (X c ) − N 2 (X c ) . . . − N nn ( X c ) I ] , N i =
 i I , I is the identity matrix of order 2 or 3, for 2D and 3D prob-

ems, respectively, and D e = 

{
D 1 D 2 · · · D nn +1 

}T 
stores the

isplacement components of the CFE. 

Thus, the internal virtual work of the CFE is given by 

W 

int 
e = δ[[ U ]] T F ([[ U ]]) , (5)

here F ([[ U ]]) is the reaction force owing to the relative displace-

ent [[ U ]] and δ[[ U ]] is an arbitrary virtual relative displacement,

ompatible with the boundary conditions of the problem. Using

he same approximation for the virtual relative displacement as

hat used for the relative displacement given by Eq. 4 , i.e., δ[[ U ]] =
 e δD e , the internal force vector of the coupling finite element can

e expressed as follows: 

 

int 
e = B 

T 
e F ([[ U ]]) . (6)

ccordingly, the corresponding tangent stiffness matrix of the CFE

an be obtained by the following expression: 

 e = 

∂F int 
e 

∂D e 
= B 

T 
e C tg B e (7)

here C tg = ∂F ([[ U ]]) /∂[[ U ]] is the tangent operator of the constitu-

ive relation between reaction force and the relative displacement. 

.3.1. Perfect adherence 

The perfect adherence between concrete and steel fibers is

onsidered by adopting the rigid coupling scheme proposed by

itencourt Jr. et al. (2015) . Thus, the displacement compatibility

f the two non-matching meshes is described by the linear elastic

elation between the reaction force and the relative displacement

iven by the Eq. 8 , by assuming a high elastic stiffness value for

he components ˜ C in the matrix of elastic constants C ( Eq. 9 ). 

 = C [[ U ]] = C B e D e (8) 

 = 

[ 

˜ C 0 0 

0 

˜ C 0 

0 0 

˜ C 

] 

(9) 
It is important to note that, ˜ C plays the role of a penalty vari-

ble on the relative displacement, and because of the equilib-

ium conditions, the interaction force F in Eq. 8 must be bounded.

ence, when the elastic constants tend towards a very high value,

he relative displacement components [[ U ]] must tend to zero. 

.3.2. Loss of adherence 

The non-rigid version of the coupling scheme proposed by

itencourt Jr. et al. (2015) that allows a relative displacement be-

ween concrete and steel fibers is used to represent the loss of ad-

erence. 

For this type of application, a local coordinate system, ( n, s, t ),

riented such that the axis n coincides with the fiber axial ori-

ntation is necessary to describe movement (sliding) of the fiber

ith respect to the concrete matrix in the direction of the fiber

xis. Thus, the relative displacement and its corresponding reac-

ion force can be expressed as [[ u ]] = R [[ U ]] and f = RF , respec-

ively, where R is the orthogonal rotation matrix between the local

nd global reference systems. 

In general, these models are described by a relationship be-

ween the local (shear) stress, τ , acting at the reinforcement-

atrix interface, and the relative displacement (interface slip), s . 

Since the CFE introduces into the problem an interaction force

etween the concrete matrix and the fiber, at the coupling node,

ne may consider that this force results from the bond (shear)

tress, τ , on the bond area (concrete-fiber interface) in the vicinity

f the coupling node. Therefore, by assuming that the bond (shear)

tress is constant in the vicinity of the node and that the size

f the vicinity (influence length) that contributes to the resultant

orce in a specific node corresponds to the average of the distances

etween the node ′ ′ j ′ ′ and its adjacent nodes of the fiber ′ ′ i ′ ′ e ′ ′ k ′ ′ ,
s shown in Fig. 3 , the interaction force may be expressed as: 

f n j = τ ([[ u n j ]]) P L j , (10)

here L j = (L i j + L jk ) / 2 is the influence length and P is the

erimeter of the fiber cross-section. Note that the slip, s , is given

y the relative displacement in direction n , i.e., s = [[ u n ]] . Since the

hear stresses act in the longitudinal direction of the fiber, they

nly contribute to the component of the force in the direction n .

he remaining transverse components of the resultant force can be

xpressed as: 

f s j = 

˜ c [[ u s j ]] P L j (11)

nd 

f t j = 

˜ c [[ u t j ]] P L j . (12)

dopting a high value between 10 6 to 10 9 (MPa/mm) for the elastic

onstant ˜ c , as suggested by Bitencourt Jr. et al. (2015) . 

Loss of adherence model might be easily represented by assum-

ng an elastic constitutive model adopting τ ([[ u n j ]]) = c n [[ u n j ]] in

he Eq. 10 . 

.3.3. A Continuum damage model to describe bond slip 

For loss of adherence, a constitutive model based on the contin-

um damage theory is used to describe the constitutive relation-

hip between the shear stress (adherence stress) and the relative

liding. The main components of this model are listed in Table 2 ,

here c n is the elastic stiffness constant (unit of stress per unit of

ength), d ∈ [0, 1] is the scalar damage variable, τ is the effective

hear stress, and r is the strain-like internal variable that assumes

he maximum value reached by | τ | during the load process. The

unction q ( r ) represents the hardening/softening law of the consti-

utive model, and it may be adjusted to fit any bond-slip model of

ype τ ( s ), considering the relationship q (r) = τ (r/c n ) . 

Taking as an example a bond slip model constructed based on

he description given by Cunha (2010) for the pullout response of
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Fig. 5. Uniaxial test setup: (a) tension and (b) compression load. 

Fig. 6. Loading history considered in the uniaxial test. 

Table 2 

Components of the continuum damage model to describe 

bond slip. 

constitutive relation τ = (1 − d) τ

effective shear stress τ = c n [[ u n ]] 

damage criterion φ = ‖ τ b ‖ − r ≤ 0 

evolution law of the internal variable r = max [ | τ | ] 
damage evolution d(r) = 1 − q (r) 

r 
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hooked steel fibers, the fiber-matrix interaction is described by the

relation depicted in Fig. 4 and given by the following equations: 

τ (s ) = 

⎧ ⎨ 

⎩ 

τmax 

(
s 
s 1 

)α
if s ≤ s 1 

τmax − (τmax −τ f )(s −s 1 ) 

s 2 −s 1 
if s 1 ≤ s ≤ s 2 

τ f if s > s 2 

, (13)

and the corresponding hardening/softening law is defined in terms

of the stress- and strain-like internal variable as: 

q (r) = 

⎧ ⎨ 

⎩ 

τmax 

(
r/c n 
s 1 

)α
se 0 ≤ r/c n ≤ s 1 

τmax − (τmax −τ f )(r/c n −s 1 ) 

s 2 −s 1 
se s 1 ≤ r/c n ≤ s 2 

τ f se r/c n > s 2 

(14)

2.3.4. Implicit-explicit integration scheme for the continuum damage 

model to describe bond-slip 

The Impl-Ex integration scheme proposed by Oliver et al. (2006,

2008) is used for the integration of the damage constitutive model

developed to describe the bond-slip behavior between concrete
nd fiber. The integration algorithm is summarized in Table 3 . As

he constitutive model corresponds to a discrete relation, the in-

egration is performed in a closed-form, such that, given the rel-

tive displacement [[ u n n +1 
]] in the direction of the fiber axis, at

seudo time t n +1 , a shear stress ˜ τn +1 is evaluated explicitly, to be

sed to fulfill the balance equation and to compute the algorith-

ic tangent operator. Note that the strain-like internal variable in-

rement (	r n +1 ) evaluated at pseudo-time step t n +1 (see step (iii)

n Table 3 ) is used in the next pseudo-time step to evaluate the

train-like internal variable explicitly ( ̃ r n +1 ) . 

. Concrete modeling 

To describe the nonlinear behavior of concrete using a contin-

ous approach, the rate-independent version of the constitutive

odel based on Continuum Damage Mechanics Theory (CDMT)

roposed by Cervera et al. (1996) was employed. This constitutive

odel was implemented in this research using a special implicit-

xplicit integration scheme to increase its robustness and acceler-

te the convergence during the nonlinear analysis. The main ingre-

ients and features of this constitutive model are described in the

ollowing. 

.1. A continuum isotropic damage model with distinct tensile and 

ompressive responses 

This constitutive model is able to describe distinct responses

hen submitted to tension or compression. To do this, its compo-

ents such as damage variable, damage criterion, equivalent stress

nd damage evolution rule are defined separately, with the aid of

he indices ( + ) and ( −) , for tension and compression, respectively.

The effective stress tensor assumes the form 

¯ = C : ε , (15)

here C is the fourth order linear-elastic constitutive tensor, and

 is the second order strain tensor. Then, in order to differenti-

te clearly the contribution due to tension 

(
σ̄+ ) and compression

σ̄−)
, the effective stress tensor is split as follows: 

¯ + = 〈 ̄σ〉 = 

3 ∑ 

i =1 

〈 ̄σ i 〉 p i � p i (16)

nd 

¯ − = σ̄ − σ̄+ , (17)

here σ̄ i denotes the i th principal stress value from tensor σ̄, and

 i represents the unit vector associated with its respective princi-

al direction. The symbols 〈 · 〉 are the Macaulay brackets, giving
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Table 3 

Impl-Ex integration scheme for the continuum damage model to describe bond-slip. 

INPUT: [[ u n n +1 
]] , r n , 	r n 

(i) Compute the effective stress 

τ n +1 = c n [[ u n n +1 
]] 

(ii) Check loading/unloading conditions 

if ‖ τ n +1 ‖ ≤ r n , then 

update damage threshold: r n +1 = r n 
else 

update damage threshold: r n +1 = ‖ τ n +1 ‖ 
(iii) Compute the strain-like internal variable increment 

	r n +1 = r n +1 − r n 
(iv) Compute explicit linear extrapolation of the strain-like internal variable 

˜ r n +1 = r n + 

	r n 
	t n 

	t n +1 ; 	t n +1 = t n +1 − t n and 	t n = t n − t n −1 

(v) Update the damage parameters 
˜ d n +1 ( ̃ r n +1 ) = 1 − ˜ q n +1 ( ̃ r n +1 ) 

˜ r n +1 

(vi) Compute the shear stress 

˜ τn +1 = (1 − ˜ d n +1 ) τ

OUTPUT: ˜ τn +1 , r n +1 , 	r n +1 

Compute the effective algorithmic tangent operator 

˜ c tan 
n n +1 

= 

∂ ̃ τn +1 

∂[[ u n n +1 
]] 

= 

(
1 − ˜ d n +1 

)
c n 

Fig. 7. Horizontal stress x imposed displacement. 

t  

z

Fig. 9. Fiber-matrix interface model employed. 

 

d  

i  

n

τ

he value of the enclosed expression when positive, and setting a

ero value if negative. 
Fig. 8. 3D numerical model of the pullout test of single straight fiber embedded on o
To define the concepts of loading, unloading and reloading con-

itions for general stress states, two positive scalar variables are

ntroduced, termed equivalent effective tensile and compression

orms, defined in this work by the expressions: 

¯ + = 

√ 

σ̄+ 
: C −1 : σ̄+ 

, (18) 
ne side: (a) setup of the pullout tests, and (b) detail of the coupling procedure. 
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Fig. 10. Fiber stress at crack with l a = 0 . 5 l f for straight fiber. 

Fig. 11. Variation of the slip along the fiber when end slip is 0.1mm. 
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and 

τ̄− = 

√ √ 

3 

(
K ̄σ−

oct + τ̄−
oct 

)
. (19)

where K = 

√ 

2 ( β − 1 ) / ( 2 β − 1 ) is a material property, which de-

pends on the ratio between the biaxial and uniaxial compressive

strengths of the concrete, β . According to Cervera et al. (1996) , typ-

ical values for concrete are β = 1 . 16 and K = 0 . 171 . In Eq. 19 , σ̄−
oct 

and τ̄−
oct are the octahedral normal and shear stresses, respectively,

obtained from σ̄−, and can be written as: 

σ̄−
oct = 

1 

3 

I 1 , (20)

and 

τ̄−
oct = 

√ 

2 J 2 
3 

, (21)

where I 1 is the first invariant of stress tensor, and J 2 is the second

invariant of deviatoric stress tensor. 
The two independent damage criteria, one for tension and other

or compression, are defined as: 

¯ + (τ̄+ , r + 
)

= τ̄+ − r + � 0 (22)

nd 

¯ −(
τ̄−, r −

)
= τ̄− − r − � 0 , (23)

here r + and r − are the strain-like internal variables, which act,

s the current damage thresholds, being updated continuously to

ontrol the size of the expanding damage surface. The bound-

ry damage surfaces for the effective stresses are expressed by
¯ + ( ̄τ+ , r + ) = 0 , and φ̄−( ̄τ−, r −) = 0 . At the onset of the analysis,

he initial value attributed to damage thresholds are r + 
0 

= f t and

 

−
0 

= f c0 , where f t is the tensile strength and f c 0 the compression

tress threshold for damage. The evolution of the damage thresh-

lds can be expressed in a closed form, always using the high-

st values reached by τ̄+ and τ̄−, during the loading process, i.e.,

 

+ = max 
(
r + 

0 
, τ̄+ ) and r − = max 

(
r −

0 
, τ̄−)

. 



L. A. G. Bitencourt Jr. et al. / International Journal of Solids and Structures 159 (2019) 171–190 179 

Fig. 12. 3D numerical model of the pullout test of single straight fiber embedded on both sides: (a) setup of the pullout tests, (b) detail of the coupling procedure, and (c) 

deformed FE mesh (with a scaling factor of 10). 

Fig. 13. Detail of the numerical models with different fiber embedment lengths: (a) l a = 0 . 1 l f , (b) l a = 0 . 2 l f , (c) l a = 0 . 3 l f , and (d) l a = 0 . 4 l f . 
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The evolution of the scalar damage variables are defined as: 

 

+ = 1 − q + ( r + ) 
r + 

, (24) 

nd 

 

− = 1 − q −( r −) 

r −
, (25) 

here, q + and q − are the stress-like internal variables, for which

wo exponential expressions are adopted to define the softening

ehavior in tension and the hardening/softening in compression,

fter reaching the initial elastic limit in tension and compression,

espectively: 

 

+ (r + 
)

= r + 0 e 
A + ( 1 −r + /r + 

0 ) (26) 

nd 

 

−(
r −

)
= r −0 

(
1 − A 

−)
+ r −A 

−e B 
−( 1 −r −/r −

0 ) . (27)

With the above definitions, the nominal stress tensor for this

odel is obtained by reducing each part of the effective stress ten-

or, according to its respective damage variable in tension ( d + ) and

ompression ( d −) : 

= 

(
1 − d + 

)
σ̄+ + 

(
1 − d −

)
σ̄−

. (28) 
In a uniaxial tensile test, Eq. 24 , with the aid of the exponen-

ial law given by the Eq. 26 is able to represent the softening in the

tress-strain curve, as a process degradation of quasi-brittle materi-

ls. To satisfy the mesh objectivity condition, the energy dissipated

y the material in tension must be properly related to the fracture

nergy of the material. Therefore, the softening parameter A 

+ , is

erived from the ratio between the material fracture energy and

he geometric factor, l ch , termed characteristic length, which cor-

esponds to the width zone where the degradation concentrates,

uch that: 

1 

A 

+ = 

1 

2 H 

(
1 

l ch 

− H 

)
� 0 , (29) 

here H = f 2 t / 2 EG f is written in terms of the tensile strength f t ,

he elastic modulus E and the tensile fracture energy of the mate-

ial G f . The characteristic length depends on the spatial discretiza-

ion and in this work, is assumed to be the square root of the finite

lement area, or the cube root of the finite element volume, for

D and 3D problems, respectively. Note, from Eq. 29 that the in-

roduction of the characteristic length implies a limitation on the

aximum size of the finite elements employed during the mesh

iscretization, l � 1 / H . 
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Fig. 14. Fiber stress at crack against crack width response. 

Fig. 15. Crack width at maximum pullout stress. 

Fig. 16. Numerical models for pullout tests with different fiber inclination angles: (a) 15 °, (b) 30 °, (c) 45 °, and (d) 60 °. 



L. A. G. Bitencourt Jr. et al. / International Journal of Solids and Structures 159 (2019) 171–190 181 

Fig. 17. Fiber stress at crack against fiber inclination angle. 

Fig. 18. Slip at frictional pullout strength against fiber inclination angle. 
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The parameters A 

− and B − are defined so that the stress-strain

urve of the quasi-brittle material satisfies two previously selected

oints of a uniaxial experimental test. 

.2. Modified implicit-explicit integration scheme 

A modified version of the implicit-explicit (Impl-Ex) integration

cheme proposed by Oliver et al. ( Oliver et al., 2006; 2008 ) is pre-

ented for the integration of the damage constitutive model with

istinct tensile and compressive responses. The main difference be-

ween the integration scheme proposed here ( Prazeres et al., 2015 )

nd the Impl-Ex scheme proposed by Oliver et al. is the choice

f the internal variables to be updated, i.e., the choice to update

he inelastic strain tensor components, ε d , instead of the updating

f the strain-like internal variable, r , as it is done by Oliver et al.

herefore, the method developed here is named Modified Impl-Ex,

nd the explicit linear extrapolation of the inelastic strain tensor
omponents can be written as 

˜ 
 

d 
n +1 = ε 

d 
n + 

	ε 

d 
n 

	t n 
	t n +1 , (30) 

here 	ε d n = ε d n − ε d 
n −1 

, 	t n = t n − t n −1 , 	t n +1 = t n +1 − t n . 

The algorithm of the Modified Impl-Ex scheme is summarized

n Table 4 for a representative pseudo-time step t n +1 . This algo-

ithm was implemented in a closed-form, in which, given a strain

ensor ε n +1 , a stress tensor ˜ σn +1 is obtained explicitly. The stress

ensor σn +1 obtained implicitly in step (vi) is used to calculate the

nelastic strain tensor and its increment in step (vii). In turn, these

ariables calculated implicitly are used in the next step to evaluate

he extrapolation of the inelastic strain tensor. To conclude, in step

ix) the explicit stress tensor is evaluated, and then used to cal-

ulate the effective algorithmic tangent operator and to fulfill the

quilibrium equation. 
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Fig. 19. 2D numerical model of the three-point bending test: geometrical properties (dimensions in mm), boundary conditions, loading and finite element mesh. 

Table 4 

Modified Impl-Ex integration scheme for the continuum damage model with distinct ten- 

sile and compressive responses. 

INPUT: ε n +1 , ε d n , 	ε d n , r 
+ 
n , r 

−
n 

(i) Compute the effective stress tensor 

σ̄n +1 = C : ε n +1 

(ii) Split σ̄n +1 into σ̄+ 
n +1 (according to Eq. 16 ) and σ̄−

n +1 (according to Eq. 17 ) 

(iii) Check loading/unloading conditions 

if φ̄+ / −
n +1 

(
τ̄+ / −

n +1 
, r + / −n 

)
< 0 , then 

update damage threshold: r + / −
n +1 

= r + / −
0 

else φ̄+ / −
n +1 

(
τ̄+ / −

n +1 
, r + / −n 

)
> 0 

update damage threshold: r + / −
n +1 

= τ̄+ / −
n +1 

(iv) Update the stress-like internal variable 

q + 
n +1 

(
r + 

n +1 

)
(according to Eq. 26 ) and q −

n +1 

(
r −

n +1 

)
(according to Eq. 27 ) 

(v) Update the damage parameters 

d + / −
n +1 

(r + / −
n +1 

) = 1 − q + / −
n +1 

(r + / −
n +1 

) 

r + / −
n +1 

, d + / −
n +1 

> 0 

(vi) Compute the Cauchy stress tensor (implicitly) 

σn +1 = 

(
1 − d + 

n +1 

)
σ̄+ 

n +1 + 

(
1 − d −

n +1 

)
σ̄−

n +1 

(vii) Compute the inelastic strain tensor and its increment 

ε d n +1 = C ( ̄σn +1 − σn +1 ) and 	ε d n +1 = ε d n +1 − ε d n 

(viii) Compute explicit linear extrapolation of the inelastic strain tensor 

˜ ε d n +1 = ε d n + 

	ε d n 
	t n 

	t n +1 = ε d n + 

( ε d n −ε d n −1 ) 
( t n −t n −1 ) 

( t n +1 − t n ) 

(ix) Compute the stress tensor (explicitly) 

˜ σn +1 = C 

(
ε n +1 − ˜ ε d n +1 

)
OUTPUT: ˜ σn +1 , ε d n +1 , 	ε d n +1 , r 

+ 
n +1 

, r −
n +1 

Compute the effective algorithmic tangent operator 

˜ C tan 
n +1 = 

∂ ̃ σn +1 

∂ ε n +1 
= C 
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3.3. Example: uniaxial loading test 

To illustrate the behavior of the damage constitutive model

adopted in the continuous approach, a uniaxial test is performed.

Fig. 5 shows the test setup composed by two three-node trian-

gular finite elements in plane stress condition with an out-of-

plane thickness of 100mm. The parameters adopted are: Young’s

modulus E = 30 . 0 GPa; Poisson’s ratio ν = 0 . 2 ; fracture energy G f =
0 . 1 N/mm; tensile strength f t = 3 . 0 MPa; compression stress thresh-
ld for damage f c0 = 15 MPa and the compressive parameters A 

− =
 . 0 and B − = 0 . 89 . 

To describe the behavior of the constitutive model under ten-

ion and compression, the loading history in Fig. 6 was considered.

irst, the elements are stretched ( Fig. 5 (a)) during the interval 1–2.

hen, a reversed load ( Fig. 5 (b)) is applied in the interval 2–3. 

Fig. 7 illustrates the response obtained. The path A-B-C de-

cribes the response in tension when the elements are stretched.

he behavior is described by a linear relation until the tensile
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Fig. 20. Detail of the coupling finite elements. 

Fig. 21. Bond-slip models adopted to describe the concrete-fiber interaction. 

Fig. 22. Force x CMOD curves. Comparison between numerical and experimental 

responses. 

Fig. 24. 2D numerical model of the direct tension tests carried out by 

Baez (2014) on notched specimens: geometrical properties (dimensions in mm), 

boundary conditions, loading and finite element mesh. 

Fig. 25. Fiber distribution in the direct tension test specimens for : (a) V f = 0 . 5% 

(506 fibers), (b) V f = 1 . 0% (1545 fibers) and (c) V f = 1 . 5% (1545 fibers). 

Fig. 23. Crack propagation process for the case with τmax = 10 . 0 MPa . 
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Fig. 26. Force x displacement curves. Comparison between numerical and experi- 

mental responses for V f = 0 . 5% . 

Fig. 27. Force x displacement curves. Comparison between numerical and experi- 

mental responses for V f = 1 . 0% . 

Fig. 28. Force x displacement curves. Comparison between numerical and experi- 

mental responses for V f = 1 . 5% . 

Fig. 29. Numerical analyses using damage model. Plain concrete and steel fiber re- 

inforced concrete with steel fiber volume fractions of 0.5, 1.0 and 1.5%. 
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trength of the material is achieved (point B) followed by a strain

oftening regime that is defined by the fracture energy adopted.

hen, the imposed displacement is reversed so that secant unload-

ng (path C-A), recovery of the stiffness and damage in compres-

ion occur (path A-D-E). Note that the point D is the compression

tress threshold for damage. 

. Applications 

This section presents three examples selected to demonstrate

he advantages of the new strategy for modeling steel fiber rein-

orced concrete. 

.1. Pullout behavior of steel fibers 

The non-rigid coupling approach (non-perfect bond) developed

s assessed through the numerical analysis of a set of pullout tests

f steel fibers. This study aims to verify the capability of the cou-

ling strategy in modeling fiber-matrix interaction, taking into ac-

ount the main factors influencing its behavior, such as type of

teel fiber, embedment length and inclination angle. 

The results are compared to the ones obtained by using

he analytical formulas of the Diverse Embedment Model (DEM)

 Lee et al., 2011 ). This comparison is very interesting because the

EM represents a more comprehensive approach currently avail-

ble for calculating the response of steel fiber reinforced concrete

SFRC) members subjected to tension and its formulation is derived

rom pullout tests of single steel fibers under different embedment

engths and inclination angles ( Lee et al., 2011 ). 

.1.1. Fiber embedded on one side 

The first pullout configuration considered in the development

f the DEM consists of a single straight fiber with a circular cross-

ection embedded on one side. To solve the second-order differ-

ntial equation corresponding to the bond slip behavior, a bilinear

ond stress-slip relationship between the fiber and the concrete

atrix was assumed, with frictional pullout strength of τ f,max =
 . 0 MPa and slip at frictional pullout strength of s f = 0 . 1 mm . Addi-

ionally, the tributary area of concrete considered effective is based

n a prism diameter of 15 times the fiber diameter. It is used a

traight steel fiber of length l f = 30 mm , diameter d f = 0 . 565 mm ,

hose behavior is described by an elastic perfectly plastic model,

ith Young’s modulus of E f = 210 GPa and yield stress of σy =
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Fig. 30. Failure patterns (damage distribution) at the end of the analyses for: (a) plain concrete, (b) V f = 0 . 5% , (c) V f = 1 . 0% and (d) V f = 1 . 5% . (damage factor varying from 

0.5 to 1). 
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45 MPa . The fiber is embedded in a linear elastic matrix mate-

ial, with Young’s modulus of E c = 32 , 617 MPa and Poisson’s ratio

f νc = 0 . 18 . Thus, to simulate numerically this pullout test, the fi-

ite element model illustrated in the Fig. 8 was constructed. 

The fiber is discretized using 10 two-node (truss) elements, em-

edded in the cylindrical specimen discretized with 608 four-node

etrahedral finite elements. The fiber and matrix are modeled us-

ng an elastoplastic and elastic material model, respectively, with

he same parameters adopted in the analysis by the DEM. These

wo independent meshes are coupled using 6 five-node tetrahe-

ral coupling finite elements, as shown in Fig. 8 (b). The concrete-

ber interaction is described by the damage model presented in

he Section 2.3.3 . In order to describe the same bilinear bond

tress-slip relationship assumed by the DEM, the model depicted

n Fig. 9 was adopted for the interface, which may be described

ssuming: 

(s ) = 

{
τmax 

(
s 
s 1 

)
if s ≤ s 1 

τmax if s > s 1 
, (31) 

hat considering the relationship q (r) = τ (r/c n ) , may be also de-

cribed in terms of the stress- and strain-like internal variable as:

 (r) = 

{
τmax 

(
r/c n 
s 1 

)
if r/c n ≤ s 1 

τmax if r/c n > s 1 
(32) 
The following values are adopted for the interface parameters:

 n = 10 3 MPa/mm , τmax = 3 . 0 MPa , and s 1 = 0 . 1 mm. To avoid the

eparation and penetration between the fiber and matrix in the

irection normal to fiber, ˜ c = 10 9 MPa/mm was assumed. 

In the numerical analysis, a prescribed vertical displacement is

mposed at the free end of the fiber (see Fig. 8 (a)), and a fixed

oundary condition is considered at the bottom of the cylindrical

pecimen. Fig. 10 illustrates the results obtained in terms of fiber

tress against the fiber slip at crack. As can be seen, the result ob-

ained by numerical analysis is identical to that obtained by the

EM, showing that the strategy adopted for the interface is able

o reproduce the fiber-matrix interaction. Moreover, the variation

f the slip along the fiber obtained numerically is also identical to

hat obtained by the DEM, as shown in Fig. 11 . 

.1.2. Fiber embedded on both sides 

Here, the same geometrical and mechanical properties adopted

n the previous analysis with fiber embedded on one side are con-

idered. First, in order to verify the influence of the fiber embed-

ed length, a set of tests with fiber embedded on both sides per-

endicular to the crack surface is performed. Fig. 12 shows the nu-

erical model constructed for the numerical analysis, with a fiber

mbedded length of l a = 0 . 5 l f . Note in this figure that a crack is

efined at the central part of the cylindrical specimen, parallel to

he base and top surfaces of the cylinder. Thus, the interaction be-
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Fig. 31. Horizontal displacement contour (mm): (a) plain concrete; (b) V f = 0 . 5% , (c) V f = 1 . 0% and (d) V f = 1 . 5% . 
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tween the top and bottom parts of the cylindrical specimen during

the pullout tests is driven by the fiber-matrix interface. 

For the discretization in finite elements, the same mesh refine-

ment applied to construct the model with one fiber embedded on

one side was employed. The coupling procedure between the non-

matching meshes is shown in Fig. 12 (b). As boundary conditions,

the bottom surface of the cylinder is fixed, whereas a prescribed

vertical displacement at the top surface is imposed. The other pull-

out tests considered with different fiber embedment lengths are

illustrated in Fig. 13 . 

For this pullout test configuration, based on the DEM, the ten-

sile stress of the fiber at the crack can be calculated by 

σ f,cr = 

4 τshort ( l a − s short ) 

d f 
, (33)

where s short is the slip at crack for the shorter embedded part

of the fiber and τ is the corresponding frictional bond stress,
short 
hich can be obtained by 

short = 

{
w cr 

w p0 
τ f,max if w cr ≤ w p0 

τ f,max if w cr > w p0 

(34)

In the Eq. 34 , w p 0 is the crack width at the maximum pullout

tress, defined as 

 p0 = s f 

[ 

1 + 4 

(
l a 

l f 

)2 
] 

, (35)

here s f is the slip at the frictional pullout strength. 

Fig. 14 compares the variation of the fiber stress as a func-

ion of the crack width for the different fiber embedment lengths.

n general, the results obtained in the numerical analyses are in

ood agreement with those obtained by the DEM. Note that, as ex-

ected, for the case with l a = 0 . 5 l f , the crack width is about twice

f that obtained with fiber embedded on one side. The difference

etween responses increases as the fiber embedment length de-

reases. 
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Fig. 32. 3D finite element mesh of the direct tension test: (a) concrete; (b) cloud 

of fibers ( V f = 0 . 5% ) and (c) coupling finite elements. . 

Fig. 33. Comparison between force x displacement curves obtained for 2D and 3D 

numerical analyses using damage model of steel fiber concrete with fiber volume 

fraction of V f = 0 . 5% . 
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Regarding the crack width at maximum pullout stress, the same

endency is observed, as can be seen in Fig. 15 . However, the val-

es obtained by the numerical analyses are slightly larger than

hose obtained by the DEM. 

To investigate the effect of fiber orientation, pullout tests of

bers with inclination angles from 15 ° to 60 ° were considered.

ig. 16 shows the models constructed for the numerical analyses. 
Based on the DEM, the tensile stress of the fiber at the crack

or an arbitrary inclination angle can be calculated by the Eq. 33 ,

here the frictional bond stress, τ short , is given by 

short = 

{
w cr 

w pθ
τ f,max if w cr ≤ w pθ

τ f,max if w cr > w pθ

, (36) 

nd the crack width at bond strength for fiber inclination angle θ
s defined as 

 pθ = 

s f 

[
1 + 4 

(
l a 
l f 

)2 
]

cos 2 θ
. (37) 

According to DEM approach, by assuming that the crack width

s given by the sum of the slips from longer and shorter embed-

ed sides ( w cr = s long + s short ), the maximum stress that the fiber

xperiences can be estimated for a given w cr as follows 

f,cr,exp = 

4 w cr 

w pθ

[
l a − ( l a − s short ) w cr − w 

2 
cr 

l f − 2 w cr 

]
τ f,max 

d f 
, (38) 

here w cr is not longer than w p θ . The Eq. 38 was developed from

q. 33 and considering s short = 

( l a −s short ) w cr −w 

2 
cr 

l f −2 w cr 
. 

Fig. 17 illustrates the results obtained in terms of fiber stress

t crack for different fiber inclination angles at maximum pullout

oad, in which w cr = w pθ . The numerical results are very similar

o those calculated using the equation proposed in the DEM. For

hese same tests, the slip at frictional pullout strength is plotted

gainst each fiber inclination angle, as shown in Fig. 18 . For an-

les less than 30 ° the results obtained are in very good agreement,

hile for angles larger than 30 °, the results obtained are slightly

arger than those obtained by the DEM, which was given by the

ollowing equation: 

 fθ = 

s f 

cos 2 θ
. (39) 

In this work, as the influence of the fiber-matrix interaction is

ccounted on the constitutive model adopted to describe the bond-

lip behavior, the analyses performed above for straight fibers are

alid for any type of fibers. Thus, for other types of fibers, as

or example, end-hooked steel fibers, the effect of the mechanical

nchorage provided by the end hook may be accounted into the

ond-slip model adopted. 

.2. Three-point bending test - EN 14651 

Three-point bending tests performed experimentally in the Lab-

ratory of Structures and Structural Materials (LEM) at the Uni-

ersity of Sao Paulo (USP) are numerically simulated. The tests

re performed according to the recommendations of EN 14651

 EN 14651, 2007 ) and all the beams have 20kg/m 

3 of steel fibers. 

Fig. 19 shows the numerical model with 7508 degrees of free-

om. As can be seen in this figure, only the fibers around the cen-

er of the beam are considered in the analyses in order to avoid

igh computational costs. The analyses are carried out considering

lane stress conditions with an out-of-plane thickness of 150mm.

n incremental vertical force is applied on the centre-point of the

pecimen. 

The concrete is discretized in 2201 three-node triangular

nite elements. The continuum damage model presented in

ection 3.1 is applied for modeling the failure processes with the

ollowing parameters: Young’s modulus E = 37 , 500 MPa; Poisson’s

atio ν = 0 . 2 ; fracture energy G f = 0 . 1 N/mm; tensile strength f t =
 MPa; compression stress threshold for damage f c0 = 46 . 0 MPa and

ompressive parameters A 

− = 1 . 0 and B − = 0 . 89 . 
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Fig. 34. Failure pattern obtained using damage model with V f = 0 . 5% : (a) damage and (b) horizontal displacement contour field. 
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The hooked steel fibers used in the experimental tests were the

Dramix ®65/35 (type A-I), with length of l f = 35 . 0 mm and diam-

eter of d f = 0 . 55 mm . The steel fibers are discretized using two-

node (one-dimensional) truss finite elements. A total of 1264 truss

elements with elastic perfectly plastic constitutive model with

Young’s modulus of E s = 210 GPa and yield stress of σy = 1345 MPa .

The coupling between the independent meshes of the concrete

and steel fibers are carried out by 2579 four-node triangular cou-

pling finite elements, as illustrated in Fig. 20 . The fiber-concrete

interaction is described using three different the bond-slip mod-

els (see Fig. 21 ) with the following parameters: τmax = 10 . 0 MPa

(case 1), τmax = 6 . 0 MPa (case 2), τmax = 2 . 0 MPa (case 3), τ f =
0 . 6 MPa , α = 0 . 4 , s 1 = 0 . 01 mm , s 2 = 6 . 5 mm , c n = 10 3 MPa/mm and

˜ c = 10 9 MPa/mm . The parameters s 1 and s 2 were calibrated to de-

scribe the descending part of the experimental responses. 

Fig. 22 shows the force x CMOD curves obtained for the three

bond-slip models considered. As can be seen, the parameters ob-

tained to describe the fiber-concrete interaction have strong influ-

ence on the response and the numerical model is able to reproduce

the results obtained experimentally. However, as the effect of the

end hooks is accounted along the length of the fiber into the bond-

slip model, the bump effect usually found in hooked fiber con-

cretes cannot be observed in the numerical responses. The crack

propagation process for the first case ( τmax = 10 . 0 MPa ) is shown

in Fig. 23 . 

4.3. Direct tension test 

In this example a series of experimental direct tension tests car-

ried out by Baez (2014) on notched specimens with steel fiber vol-

ume fractions of 0.5, 1.0 and 1.5% are numerically analyzed. Five
pecimens were tested for each fiber volume fraction in order to

tudy the variability of the results. 

Fig. 24 shows the geometrical properties, boundary conditions,

nd finite element mesh employed for the 2D numerical analyses

erformed. The analyses are carried out considering plane stress

onditions with an out-of-plane thickness of 150mm. A horizontal

isplacement of δ = 2 . 5 mm on the right side of the specimen is

mposed incrementally. 

The hooked steel fibers used in the experimental tests were the

ramix ®RL 45/50 BN with length of l f = 50 . 0 mm and diameter of

 f = 1 . 05 mm . The steel fibers are discretized using two-node (one-

imensional) truss finite elements. A total of 1282, 2558 and 3852

russ elements were employed in the models with steel fiber vol-

me fractions of 0.5, 1.0 and 1.5%, respectively. An elastic perfectly

lastic constitutive model, with Young’s modulus of E s = 200 GPa

nd yield stress of σy = 520 MPa was used to describe their behav-

or. The distributions of the fibers for the three cases are depicted

n Fig. 25 . As can be noted in this figure, only the fibers around

he center of the specimen are considered in the analyses. A previ-

us study of this example demonstrated that the fibers outside the

racture plane have almost no influence on final response. 

The concrete bulk is discretized into 2312 three-node trian-

ular finite elements for all the cases. The continuum damage

odel presented in Section 3.1 is applied for modeling the fail-

re processes with the following parameters: Young’s modulus

 = 18 , 101 MPa; Poisson’s ratio ν = 0 . 23 ; fracture energy G f =
 . 100 N/mm; tensile strength f t = 1 . 72 MPa; compression stress

hreshold for damage f c0 = 20 . 0 MPa and compressive parameters

 

− = 1 . 0 and B − = 0 . 89 . 

The coupling between the independent meshes of the con-

rete bulk and steel fibers are carried out by four-node trian-

ular coupling finite elements with the bond-slip model out-
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ined in Section 2.3.3 . To describe the concrete-steel fiber interac-

ion, the following parameters were adopted: τmax = 9 . 0 MPa , τ f =
 . 5 MPa , α = 0 . 4 , s 1 = 0 . 01 mm , s 2 = 3 . 5 mm , c n = 10 3 MPa/mm and

˜  = 10 9 MPa/mm . 

Fig. 26 to Fig. 28 show the force x displacement curves obtained

or the different fiber volume fractions considered. As can be seen,

he numerical results are in good agreement with those obtained

xperimentally by Baez (2014) . 

The numerical results obtained for the different fiber volume

ractions are also plotted in Fig. 29 . In addition, the response for a

pecimen of plain concrete is also plotted in this figure in order to

ecome clear the contribution of the fibers. The failure patterns for

ll these cases are illustrated in Fig. 30 . Note that for the plain con-

rete a localized damage is observed, whereas for the specimens

ith steel fibers a widespread damage composed by a main crack

nd secondary cracks is obtained, as observed in the experimental

ests. This is justified by the stress transfer between cracks pro-

ided by the fibers. To illustrate the process of crack localization

main crack), the horizontal displacement contour is plotted, as

hown in Fig. 31 . In all the fiber contents considered, the displace-

ent has been localized near the plane connecting the notches,

espite of a widespread damage be observed by increasing the vol-

me of fibers (see Fig. 30 ). 

3D numerical analysis is also performed for the specimen with

 f = 0 . 5% . Figs. 32 (a) and (b) show the finite element mesh used

or the concrete bulk and the distribution of fibers employed in the

nalysis, respectively. The coupling elements used in this analysis

re illustrated in Fig. 32 . In addition, to illustrate the effect of the

bers, the specimen of plain concrete is also simulated. 

A comparison between the 2D and 3D analyses in terms of force

 displacement curves for the case of V f = 0 . 5% is shown in Fig. 33 .

s can be noted the 2D and 3D results for V f = 0 . 5% are in good

greement. 

The failure pattern obtained for the case with V f = 0 . 5% is

hown in Fig. 34 . 

. Conclusions 

In this work, a numerical model for SFRC has been pro-

osed. In this model, the material is composed by three phases:

oncrete, discrete discontinuous fibers and concrete-fiber inter-

ace. To obtain this model, the coupling technique proposed by

itencourt Jr. et al. (2015) is applied. Thus, the finite element

eshes of the concrete and of a cloud of fibers can be gener-

ted independently, avoiding homogenized models and conformal

eshes. 

The coupling technique adopted for coupling non-matching

eshes based on the use of coupling finite elements demonstrated

o be highly versatile because it can be used for coupling meshes

omposed of different types of finite elements for two and three-

imensional problems. 

From the fiber content and the geometrical properties of both

he steel fiber and concrete specimen, a cloud of fibers is generated

sing an isotropic uniform random distribution while considering

he wall effect of the mold, according to the algorithm proposed

y Cunha (2010) . For the numerical analyses performed in this re-

earch, good results in terms of structural and cracking responses

ave been obtained by employing the distribution proposed by this

lgorithm. 

Continuum damage models are used for modeling the quasi-

rittle behavior of the concrete and the concrete-fiber interaction.

or the first, a model with two independent scalar damage vari-

bles for describing the composite behavior under tension and

ompression is employed, while the non-rigid version of coupling

cheme proposed by Bitencourt Jr. et al. (2015) is used to describe

he relationship between the shear stress and the relative sliding
etween the concrete and fibers. In addition, to increase the com-

utability and robustness of the continuum damage models em-

loyed in this research, an implicit-explicit integration scheme is

sed. For the concrete-fiber interface, the same procedures pro-

osed by Oliver et al. ( Oliver et al., 20 06; 20 08 ) is adopted, and

or the continuum damage model used to simulate the failure pro-

ess in concrete, the inelastic strain tensor components are chosen

o be updated instead of updating the strain-like internal variable,

s proposed by Oliver et al. The use of this integration scheme was

ound to be very robust since no problems related to convergence

uring the nonlinear analyses were found. The guaranteed conver-

ence and robustness of the implicit-explicit algorithm result from

he obtained positive definite algorithmic tangent operator. 

In general, the results obtained in numerical analyses demon-

trated that the proposed numerical approach is able to represent,

fficiently, qualitatively and quantitatively, the main failure mech-

nisms of SFRC. The main advantage obtained using the proposed

ethodology is that the main factors that influence the behavior of

FRC can be considered separately, including the complex behavior

f the concrete-fiber interaction, which plays an important role in

he material failure process. 

In the first example a set of numerical pullout tests considering

ifferent types of fibers, embedment lengths and inclination angles

s also performed. For comparison with the basic equations of the

EM proposed by Lee et al. (2011) , the same pullout test configura-

ions described in the development of this model are adopted. The

esults obtained with the proposed numerical approach are in very

ood agreement with those obtained by the DEM, demonstrating

hat the proposed approach is very appealing for use in modeling

FRC with a discrete treatment of fibers. 

A three-point bending beam is numerically simulated in the

econd example. In the lack of pullout test results, three curves

o describe the concrete-fiber interaction were adopted in order

o compare the results with those obtained experimentally in the

aboratory of Structures and Structural Materials at the University

f Sao Paulo. The results show that the concrete-fiber interaction

as strong influence in the response of the composite showing that

ullout test is important to understand the behavior of this type of

omposite. 

In the last example, a series of experimental direct tension tests

arried out by Baez (2014) on notched specimens with steel fiber

olume fractions of 0.5, 1.0 and 1.5% are numerically analyzed. A

revious study of this example demonstrated that the fibers out-

ide the fracture plane have almost no influence on final response.

hus, fibers outside the fracture plane were removed to avoid high

omputational costs. The load deflection curves obtained are in

ery good agreement with those obtained by Baez (2014) . More-

ver, as occurred in the previous examples, the continuum damage

odel used was able to capture the process of failure. 

Finally, the numerical approach developed may be very useful

n future researches and the numerical tool may be the base source

ode for the developments to be made in the field of failure pro-

esses in fiber reinforced cementitious composites. 
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