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The implications of the spatial variability of concrete mechan-
ical properties on the numerical analysis of a slab strip specimen 
(PLS4000) with no shear reinforcement are investigated. The 4.0 m 
(13 ft) thick specimen was tested by Collins et al. Hunter undertook 
a subsidiary experimental program to assess the spatial variability 
of the concrete through ultrasonic pulse velocity measurements 
taken on the PLS4000 specimen. The spatial variability was then 
included in finite element analyses of the specimen using stochastic 
methods. It was found that the spatial variability of the concrete 
mechanical properties influenced the crack pattern and develop-
ment of the critical failure crack.

Keywords: finite element analysis; reinforced concrete; spatial variability; 
ultrasonic pulse velocity.

INTRODUCTION
Reinforced concrete structures in the field typically 

exhibit relatively large variations in the mechanical proper-
ties of the in-place concrete, stemming mainly from batch-
to-batch variations, differences in concrete placement and 
curing practices, and inherent heterogeneity of the concrete 
matrix.1-3 Depending on the type of the structure, reinforce-
ment configuration, and load-carrying mechanism, this 
spatial variability of the concrete mechanical properties can 
potentially have a notable impact on the overall behavior 
and failure mode. It may be particularly influential to the 
performance of large shear-critical structures containing 
little or no shear reinforcement, for example, deep slabs or 
wind turbine foundations.

Research on spatial variability in the context of reinforced 
concrete structures has been mostly centered on the calcu-
lation of structural reliability and structural fragility with 
a focus on the effects of deterioration due to corrosion of 
the reinforcement bars.4,5 However, the behavior of large 
concrete members containing reduced reinforcement ratios 
is highly dependent on the behavior of the concrete and thus 
on its mechanical properties.

This paper investigates the effect that spatial variability 
of concrete strength can have on the calculated response of 
a large slab strip specimen, PLS4000, tested at the Univer-
sity of Toronto by Collins et al.6 and Quach.7 In a related 
study, conducted by Hunter,8 ultrasonic pulse velocity 
(UPV) measurements were taken from a grid of points on 
PLS4000, prior to its testing, to assess the spatial variability 
of the concrete component. The spatial variability was then 
incorporated into nonlinear finite element modeling, using 
stochastic methods. The results, discussed herein, provide 
an indication of the confidence one should have in regards 

to the calculated strength of large shear-critical structures 
containing little or no shear reinforcement.

RESEARCH SIGNIFICANCE
Concrete structures are designed and analyzed as homog-

enous monolithic structures at the structure level and at the 
member level. For small members, all cast from the same 
batch of concrete, this is largely true. However, for larger 
members cast in-place, the concrete cast from multiple trucks 
may have variable properties that will result in spatially vari-
able material properties within a single concrete element. 
Wind turbine foundations, thick walls, tunnels, and deep mat 
foundations are examples of large structures that are typically 
designed without transverse shear reinforcement and with 
the assumption of homogenous materials; however, due to 
their size, they almost always consist of multiple batches of 
concrete. The comprehensive analysis of one such structure 
will provide new understanding of the potential implications 
of spatial variability on the performance of large shear-crit-
ical elements, such as failure mode, strength, ductility, and 
overall load-deformation response.

PLS4000 SPECIMEN
Specimen details

The specimen analyzed in this study was a large reinforced 
concrete slab strip denoted PLS4000. The slab strip was part 
of an investigation to assess the shear strength of very large 
unreinforced concrete slabs. For additional details pertaining 
to the construction, testing and results for PLS4000, refer to 
Collins et al.6 and Quach.7

Figure 1 shows details of the slab strip that was tested 
under an off-center displacement-controlled point load, P, 
which divided the specimen into two shear spans labeled 
east and west. The west span was 7 m (23 ft) in length and 
contained vertical 20M T-headed reinforcing bars spaced at 
1.5 m (4.9 ft). The east span was 12 m (39.4 ft) in length 
and had no shear reinforcement. The longitudinal reinforce-
ment consisted of nine 30M reinforcing bars of Grade 500W, 
which equates to a reinforcement ratio of 0.656%. Three 
20M bars were used for crack-control at the top of the slab 
strip. The specified thickness of the slab strip was 250 mm 
(10 in.).
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Two tests were performed to determine the capacities of 
the east and west spans. The slab strip was designed such 
that the first loading test would fail the east span, containing 
no transverse reinforcement. The east span was repaired 
using external post-tensioned vertical thread-bars; the spec-
imen was loaded again, resulting in failure of the west end. 
For the purpose of this study, focus is placed on the behavior 
of the east span only.

Test results
The measured load-deformation response of the specimen 

is shown in Fig. 2 along with the crack diagram at failure. 
The significant self-weight of the specimen, measuring 
442 kN (99.4 kip), produced a deflection of approximately 
1.0 mm (0.04 in.). Flexural cracking occurred when the 
applied load (P) reached 198 kN (45 kip). Failure of the 
specimen was initiated by the development of a flexur-
al-shear crack that propagated near the support, traversing 
the depth of the member at an inclination of approximately 
45 degrees toward the loading point. At failure, the applied 
load was equal to 685 kN (154 kip) and the deflection at the 
point-load location was 12 mm (0.47 in.).

A prediction competition was organized on the behavior of 
PLS4000 specimen with 66 entries from around the world. 
Shown in Appendix A* is a comparison of the experimental 
results with the predictions in terms of the applied load to 

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.

cause failure of the east span. Also shown on the plot are 
the calculated strengths based on six different code provi-
sions. The predictions are marked by significant scatter, with 
44% of the submissions dangerously unconservative and 
only 20% of the predictions considered sufficiently accurate. 
Collins et al.6 concluded: “predicting the shear strength of 
very thick slabs not containing shear reinforcement was a 
challenging task for the profession.”

Fig. 1—Details of PLS4000 specimen (taken from Collins et al.6).

Fig. 2—Measured load-deformation response (adapted from 
Quach7).
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TEST PROGRAM
Procedure

The objective of the collateral study was to determine if 
statistically significant spatial variability existed within the 
concrete, given the largeness of the specimen, by spatially 
mapping the compressive strength using nondestructive 
testing. The experimental program involved the collection of 
ultrasonic pulse velocity (UPV) measurements from the slab 
strip and from five sets of cylinders. Each set of cylinders 
contained two cylinders from each batch of concrete (three 
trucks were used in casting) for a total of six cylinders per 
set, 30 cylinders in total. The cylinders were tested at 7, 14, 
22, 28, and 42 days after the cast.

For the UPV tests on the main slab strip, a set of grid 
points was established. Measurements were taken at incre-
ments of 500 mm (20 in.) in the vertical direction and 
between 610 and 533 mm (24 and 21 in.) in the horizontal 
direction. The variable spacing of the horizontal coordi-
nates was selected such that the measurements would fall 
directly between surface seams caused by the formwork. 
The forms were constructed using prefabricated panels with 
either a width of 610 or 457 mm (24 or 18 in). At the joints 
between the panels, vertical and horizontal surface seams 
were created. Thus, to avoid the surface seams, the vertical 
gridlines were centered between adjacent defects. The grid 
layout is shown in Fig. 3. The grid was measured using a 
ruler that was suspended from the top of the slab strip. The 
ruler was leveled vertically, and each grid point was centered 
between seams. Horizontal and vertical grid points were 
then checked with a level and a tape measure.

In addition to the large grid, a smaller grid was estab-
lished to capture a small section of the slab strip at a higher 
resolution, as illustrated in Fig. 3. The smaller grid added 
two vertical gridlines between each major vertical gridline, 
and one horizontal gridline between each major horizontal 
gridline. This created a vertical gridline spacing of approxi-
mately 200 mm (7.87 in.) and a horizontal gridline spacing 
of approximately 250 mm (9.84 in.).

The UPV instrument measures the travel time of an ultra-
sonic pulse. In order to determine the velocity, the thickness 
of the slab strip had to be assessed accurately. The original 

formwork required a series of ties passing through the width 
of the slab strip in order to hold the forms together. This left 
a set of holes though the slab strip that were used to measure 
the width of the slab strip.

Data collected
This section summarizes the test data obtained from the 

concrete cylinder tests, the UPV measurements, and the 
measured slab strip widths. Two concrete cylinders from 
each of the three trucks were tested at 7, 14, 22, 28, 35, and 
49 days. The 28-day compressive strength of the concrete 
cylinders had an average value of 39.4 MPa (5710 psi). 
Table 1 summarizes the compressive strength values for the 
concrete from each truck, as measured by Quach.7

As part of the test program undertaken for the assessment 
of spatial variability of concrete, UPV measurements were 
performed for each cylinder. Due to scheduling issues, the 
UPV measurements were not collected for the 35-day cylin-
ders. In addition, the UPV measurements for the 49-day 
cylinders were taken at 42 days. The UPV measurements are 
summarized in Table 1. A scatter plot of the measured UPV 
and compressive strength is presented in Fig. 4 which shows 
that a correlation exists between the UPV and the compres-
sive strength of the concrete.

From the PLS4000 specimen, UPV measurements were 
taken on the main grid at a concrete age of 14 days and on the 
small grid at a concrete age of 15 days. At each grid point, five 
UPV measurements were recorded and averaged. To aid in 
the visualization of the data, a cubic spline interpolation of the 
main grid is shown in Fig. 5. From the figure, it is observed that 
there was distinct stratification in the vertical direction. The 
concrete was cast using three trucks, each with a lift height of 
approximately 1.0 to 1.5 m (3 to 5 ft). The UPV measurements 
were therefore consistent with concrete placement. Addition-
ally, the cylinders from the second truck, when measured at 
14 days, were consistently stronger than those from the other 
two trucks. This was reflected in the shorter travel time for the 
ultrasound wave that was observed. The travel time measure-
ments ranged from 50.9 and 54.5 microseconds.

The small grid visualization is shown in Fig. 6. The 
smaller gird also reflected the stratification observed in the 

Fig. 3—Grid layout of ultrasonic pulse velocity testing.
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main grid; however, it only straddled the bottom two lifts. 
The stratification boundary in both the main grid and the 
small grid appeared to be at an elevation of approximately 
1.2 m (3.9 ft).

The thickness of the slab strip was measured through a 
series of holes that were present in the slab strip from the 
placement of the formwork ties. The slab strip thickness at 
each grid point was then determined by linear interpolation. 
The thickness was found to vary between 244 mm (9.6 in.) 
and 259 mm (10.2 in.), as discussed later. A contour of the 
measured thickness of the slab strip is shown in Fig. 7.

The ultrasonic pulse velocity was calculated using the 
measured times and the interpolated thickness. The UPV 
measurement is calculated using Eq. (1) where Δx is the 
measured thickness and Δt is the measured travel time. 

Figures 8 and 9 show the interpolated UPV measurements 
corrected for thickness variations.

 UPV x t� � �/  (1)

Analysis of data
Thickness of PLS4000 specimen—The thickness of the 

slab strip showed little variation, ranging between 244 mm 
(9.6 in.) and 259 mm (10.2 in.). The variation of thickness 
was assumed to be a random variable. The distribution of 
thickness observed in the slab strip was found to be normally 
distributed with a mean value of 251 mm (9.9 in.) and a 
coefficient of variation of 1.0%. The fitted distributions 
are shown in Appendix B. Thickness spatial correlation is 
expected to exist as the thickness variation occurs due to 
changes in formwork. However, the experimental semivar-
iogram, plotted in Appendix B, reveals that no such spatial 
correlation existed in the thickness (refer to Hunter8 for 
more information on experimental semivariograms). This 
was due, in part to the difficulty of measuring the thickness 
through holes in the slab strip left from the formwork. As 
such, no statistically significant conclusion can be drawn 
about the spatial statistics of the slab strip thickness.

Concrete cylinder data—A regression model was used 
to relate the ultrasonic pulse velocities to the compressive 
strengths measured from cylinders, reported in Table 1. 
Additionally, temporal regression models were employed 
for the compressive strength and ultrasonic pulse velocity.

The regression model adapted from Unanwa and Mahan3 
was used to evaluate the change in concrete strength versus 
time. A linear relationship was assumed between the 
compressive strength, normalized from its 28-day strength, 
and the natural logarithm of the concrete age in days. Eq. (2) 
was developed accordingly to describe the compressive 
strength of concrete.

 f t fc t c, ,( . ln . )� � � � �0 1632 0 4564 28
 (2)

Table 1—Compressive strength and UPV values for concrete cylinders

Age (days)

Compressive strengths (MPa) Ultrasonic pulse velocity (m/second) Length (mm)

Truck 1 Truck 2 Truck 3 Average Truck 1 Truck 2 Truck 3 Average T1/T2/T3

7
A 27.0 31.8 31.6

30.0
4638 4735 4698

4662
301/298/294

B 26.8 32.2 30.3 4609 4727 4566 296/299/297

14
A 32.7 34.9 37.3

35.7
4842 4844 4754

4814
299/295/299

B 33.9 38.5 37.0 4793 4851 4801 296/293/299

22
A 37.3 36.9 38.0

37.2
4888 4860 4879

4873
304/296/304

B 38.0 38.1 35.3 4900 4875 4834 303/297/304

28
A 38.5 35.6 42.6

39.4
4928 4935 4968

4932
300/303/302

B 42.0 42.2 35.4 4860 4992 4910 301/301/304

35
A 37.5 42.1 38.9

41.5
— — —

—
—

B 39.1 44.5 46.7 — — — —

49
A 42.8 44.7 45.6

43.4
4944 4981 5033

5022
301/303/301

B 40.6 42.6 44.2 5018 5012 5022 303/301/305

Note: 42 days for the UPV measurements. 1 MPa = 145 psi; 1 m = 3 ft; 1 mm = 0.04 in.

Fig. 4—Measured ultrasonic pulse velocity versus cylinder 
compressive strength.



253ACI Structural Journal/March 2021

The regression provided an R2 value of 0.796 with 
respect to all cylinder compression tests. This was consid-
ered acceptable as the concrete contained both within-batch 
variation and batch-to-batch variation. A scatter plot of the 
collected data and the fitted regression is shown in Fig. 10(a). 
The regression is also compared against the average of the 
concrete strength at each test date in Fig. 10(a). The R2 value 
of 0.986 with respect to the average compression strengths 
revealed good agreement between the test data and the 
selected regression model.

Equation (3) was developed to relate the evolution of 
ultrasonic pulse velocity with time. The regression produced 
a R2 of 0.994 with respect to the average UPV measure-
ments. The UPV measurements and the average of the 
UPV measurements are compared against the fitted trend in 
Fig. 10(b).

 UVP t UVPt � � �( . ln . )0 038 0 8728 28  (3)

A third regression model was used to relate the ultra-
sonic pulse velocity to the compressive strength of concrete. 
Panesar and Chidiac9 suggested that a linear relationship 
exists between the fourth root of the concrete strength and 
the ultrasonic pulse velocity. This relationship was assumed 
for the regression of the test data. Eq. (4) is the resulting 

regression equation. A plot of the fitted regression model 
with the average UVP and average compressive strengths is 
shown in Fig. 11. This plot reveals that the average values 
are in good agreement with the prediction model.

 f UPV
c
′( ) = −

0 25

1640
0 4968

.

.  (MPa)  (4)

The residuals from the regression model were analyzed as 
a random variable. The residuals have a mean of 0.051 MPa 
(7.39 psi) and a standard deviation of 2.24 MPa (325 psi). 
Least squares regression assumes of a normally distributed 
error term. A comparison of the empirical cumulative distri-
bution function for the residuals and a fitted normal distri-
bution confirms this assumption. A Kolmogorov–Smirnov 
(KS) test on the residuals confirmed the goodness of fit. 
Thus, a normal distribution is considered a good fit for the 
error parameter in the regression model. Plots of the resid-
uals, empirical and assumed cumulative distribution func-
tions are given in Appendix C.

Spatial analysis of UPV measurements—For the PLS4000 
slab strip, the UPV measurements were all collected from 
the same concrete specimen. Thus, it was assumed that the 
UPV measurements were statistical data from the same 
population. The UPV was found to be normally distrib-
uted with a mean of 4793 m/s (15,700 ft/s) and a standard 

Fig. 5—UVP time measurements for main grid: (a) actual data; and (b) interpolated data.
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deviation of 82.9 m/s (272 ft/s). A KS test and a chi-squared 
goodness of fit test provided p-values of 0.211 and 0.505, 
respectively. The histogram and empirical cumulative distri-
bution functions, as well as the fitted distribution, are shown 
in Appendix D.

The spatial variability of the UPV measurements was first 
assessed using ANOVA testing to determine if the variability 
between points is greater than the variability at a given point 
due to measurement error. This was done with a replicated 
two-way ANOVA test where the independent variables were 
the horizontal and vertical grid positions, and the dependent 
replicated variable was the measured UPV. The null hypoth-
esis assumed that the concrete had uniform material proper-
ties everywhere regardless of concrete batch or location. The 
results of the ANOVA test are shown in Table 2.

The ANOVA test revealed that there was statistically 
significant variability between grid points. Both the X and 
Y directions had small p-values, suggesting that there was 
significant variability. In addition, there was no interaction 
between the X and Y variables. This implied that the varia-
tions in the X and Y directions were independent.

The data collected were assumed to be part of a random 
field. In order to interpolate between the sampled points, 
spatial statistical tools are required. An approach like 
Nguyen et al.10 was adopted. An empirical semivariogram 
was constructed from the data set.

A semivariogram determines how the data are correlated 
with distance. As such, to predict random fields from 
collected spatial data, a semivariogram is required.11 An 
empirical construction of the semivariogram is achieved by 
employing Eq. (5)

 γ̂(x) � � �
� �

1

2

2

n x
Z x Z xi

x x x
j

i j( )
{ ( ) ( )}  (5)

where the lag distance, x, is defined as the distance between 
two points xi and xj, γ̂(x) is the empirical semivariance for a 
lag distance x, n(x) is the number of pairs of the lag distance 
x within the data set, and Z(xi) and Z(xj) are the measured 
values of the random field Z for points xi and xj respectively. 
The random field Z was defined as the variation of ultra-
sonic pulse velocity within the concrete slab strip. Note 
that the assumed random field is two-dimensional. Thus, 
the value x = xi – xj is generalized in two dimensions to be 
the actual distance between two points and is calculated as 
x X Y= +∆ ∆2 2 . Stein11 noted that sets of x are not entirely 
equal in value. Therefore, they are usually grouped into bins 
of similar lag distances.

The random field was assumed to have an autocorrela-
tion function. An autocorrelation function is a function that 
describes the covariance of a random field by the distance 
between two points within the field.11 This is formally 
described by Eq. (6)

  cov{ ( ), ( )} ( )Z x Z y K x y� �  (6)

where cov{Z(x), Z(y)} is the covariance between any two 
points x and y in the random field Z. K(x-y) is the autocor-
relation function that can describe the covariance for any 
two points x and y based on their difference. Again, note that 
if the random field is higher than one-dimensional, then the 
quantity x-y is the vector length between vectors x and y. 
The commonly used isotropic autocorrelation function is the 
spherical model shown in Eq. (7)
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where the variance of the random field is described by C + 
C0, the parameter C0 is equal to the nugget effect, r is the lag 
distance equal to x-y, and a is the range of the random field. 
The nugget effect describes the phenomenon where points 
at a very close (or the same) distance still exhibit stochastic 
variability. This is also referred to as the micro-scale vari-
ation. The range of a random field is the distance at which 
two points are no longer correlated. The parameter C is the 
amount of variance in the random field that is not attributed 

Fig. 6—UVP time measurements for small grid: (a) actual 
data; and (b) interpolated data.

Fig. 7—Interpolated plot of measured thickness. 
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Fig. 8—Calculated UPV for large grid with cubic spline interpolation.

Fig. 9—Calculated UPV for small grid with cubic spline interpolation.

Fig. 10—(a) Average daily compressive strength compared against fitted regression; and (b) average ultrasonic pulse velocity 
compared against regression model.
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to spatial variation. The analytical semivariagram can be 
determined from Eq. (8)

 �( ) var{ } ( )r Z K r� �  (8)

Substituting the variance of the random field with C + C0 
yields Eq. (9) 
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The spherical model was assumed to represent the data. A 
regression was done to determine the range, sill, and nugget 
effect. The regression model is plotted with the empirical 
semivariogram in Appendix D. The semivariogram was 
found to have no nugget effect; the sill of the semivariogram 
was calculated to be 6810 m2/s2 (73,300 ft2/s2), and the range 
was calculated to be 1190 mm (48.9 in.).

Using the properties of an assumed semivariogram, an 
ordinary kriging map can be generated from the collected 
data points. Kriging maps are heavily employed in geospa-
tial interpolation problems.11 Shown in Appendix E is a 
summary on how the kriging maps are calculated. This 
method was used to produce kriging maps for the ultrasonic 
pulse velocity at the center of each of the finite elements 
in the mesh. The calculated kriging map for the ultrasonic 
pulse velocity is shown in Fig. 12.

Ultrasonic pulse velocity variable transformation—In 
order to convert the data from the kriging map of the ultra-
sonic pulse velocity to concrete compressive strengths at test 
day, Eq. (3) was used to transform the data in two stages. 
The UPV data were transformed from the measured 14-day 
values to the 28-day values. Then, these UPV values were 
transformed from the predicted 28-day values to the test day 
(46-day) values. The calculated transformation factor was 
equal to 1.047 and was used as a multiplier to transform the 
UPV data measured at 14-day to 46-day values.

Then, Eq. (4) was used to calculate the corresponding 
compressive strength. To assess the accuracy of this transfor-
mation, Eq. (3) and Eq. (4), based on data from 7 to 49 days, 
were compared against Eq. (2), based on data up to 80 days 

Fig. 11—Average UVP versus average compressive strength 
and regression model.

Table 2—Replicated two-way ANOVA analysis 
results

Source of 
variation

Sum of 
squares

Degrees of 
freedom

Mean 
square

F 
test-ratio p-value

X-direction 47.7 18 2.65 3.56 1.2 × 10-6

Y-direction 42.5 6 7.04 9.48 6.6 × 10-10

Interaction 14.6 108 0.13 0.18 1.00

Error 395.4 532 0.74 — —
Total 499.9 664 — — —

Fig. 12—Kriging map used for finite element analysis.
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in Fig. 13. The error in the collected data for interpolating 
between 0 and 49 days was reasonably low. However, the 
trend started to deviate from the Eq. (2) when extrapolating 
past 49 days. Testing of PLS4000 ended on day 46, thus, the 
interpolation was considered reasonably accurate. Figure 14 
shows the finite element model inputs after the kriging map 
and variable transformation were applied. The compressive 
strength for each element was an input variable. The tensile 
strength was calculated based on the ACI 31812 relationship 
recommended for web-shear cracking as per Eq. (10). The 
modulus of elasticity, Ec, was calculated using the equations 
recommended in the CSA A23.313 code (Eq. (11))

 ′ = ′f ft ACI c. . ( )0 33 MPa  (10)

 E fc c
c= ′ +( )





3300 6900
2300

1 5γ .

( )MPa  (11)

where γc is density of concrete, taken as 2300 kg/m3 
(143.6 lb/ft3). 

Within member strength variation and spatial vari-
ability—To assess the spatial variability, the variability 
attributed to batch-to-batch variation must be disaggre-
gated from the variability of the test. It has been shown in 
the literature that the within-member variation is inflated 
when the number of batches of concrete cast within a 
member increases.14

The variability due to multiple batches cast in the same 
member was assessed using the cylinder data. The statistics 
for each of the cylinders is presented in Table 3.

The total coefficient of variation of the UPV test data after 
regression, VEXP, was calculated to be 0.0784. This coeffi-
cient of variation includes the variability due to spatial vari-
ation, and due to batch-to-batch variation. Using the mean 
coefficient of variation from Table 3 as the batch-to-batch 
coefficient of variation (VBatch-to-Batch), the coefficient of vari-
ation due to spatial variability (VS) can be calculated using 
Eq. (12).

 V V VS EXP Batch to Batch= − =− −
2 2 0 0457.  (12)

Bartlett and MacGregor14 analyzed the spatial variation 
within a set of girders originally tested by Scanlon and 
Mikhailovsky.15 They reported that the average coefficient 
of variation for variation due to within-girder spatial vari-
ation was 0.043. Thus, the coefficient of variation due to 
spatial variability in this study was considered reasonable. 
It should be noted, however, that the influence of variability 
due to UPV measurement error was not included and should 
be addressed in a future study.

Comparison of spatial variability and experimental 
crack pattern

Figure 15 shows an overlay of the experimental crack 
pattern and the collected UPV data. Cracking in reinforced 
concrete is influenced by the stress field and the local strength 
variations. A study conducted by Koide et al.16 showed that 
probabilistic cracking in unreinforced sections deviated from 
a deterministic uniform approach. Thus, it is possible that in 
a large unreinforced section, where the failure depends on 
the transfer of stress along the crack, that the material prop-
erties play a role in the crack pattern. In Fig. 15, it can be 
observed that that the two main shear cracks pass between 
the zones of weakness in the middle layer. This suggests that 
the variation in tensile strength in the middle layer contrib-
uted to the location of cracks and ultimately to the location 
of the failure crack.

FINITE ELEMENT ANALYSIS OF PLS4000
The nonlinear finite element analysis program 

VecTor217,18 was used for the analysis of PLS4000 specimen. 
This program is based on a smeared-crack macro-modeling 
approach and is suited for the analysis of two-dimensional 
reinforced concrete structures. The theoretical basis of the 
program is the Modified Compression Field Theory19 and 
the Disturbed Stress Field Model.20 Three type of analyses 
were performed. First, the slab strip was modeled with 
uniform mechanical properties. A subsequent analysis 
was performed to include the spatially variable properties 

Table 3—Statistical parameters for concrete 
cylinder test data

Age (days) Mean fc′ σ (MPa) COV (%)

7 29.96 2.45 8.18

14 35.74 2.23 6.24

22 37.23 1.08 2.91

28 39.39 3.35 8.51

35 41.46 3.59 8.66

49 43.42 1.79 4.11

80 45.47 2.71 5.95

Mean COV 6.37

Note: σ is Standard deviation; COV is coefficient of variation; 1 MPa = 145 psi.

Fig. 13—Comparison of fitted and calculated compressive 
strength trend.
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shown in Fig. 14. Lastly, a stochastic simulation was 
conducted to assess the sensitivity of the load-deformation 
response to different material input parameters.

Deterministic results
The finite element (FE) model constructed to model the 

PLS4000 specimen is shown in Fig. 16. A very fine mesh 
of 8033 elements was used to model the structure, with 41 
elements used through the depth of the beam. The response 
is particularly sensitive to the assumed crack spacing and 
tension softening models. Therefore, the east and west 
spans of the beam were modeled using different material 
types due to the different assumed maximum crack spacing. 
CEB-FIP 1978 Code21 equations were used to calculate 
the predicted crack spacing on either side; for the unrein-
forced side, the crack spacing was calculated to be 4035 mm 
(160 in.). The reinforcement was represented using discrete 

truss bar elements. The bottom and top flexural reinforce-
ment were grouped into one set of truss bars with total areas 
acting through the geometric centroid of each bar group. A 
summary of the model inputs is shown in Table 4.

A comparison of the FE analysis and the experimental 
load-deflection response is shown in Fig. 17. The FE 
model predicted a failure load of 715 kN (161 kip) and 
a deflection at ultimate of 12.3 mm (0.484 in.). The 
analysis captured the initial and post-cracking stiffness of 
the structure; however, the cracking load predicted by the 
FE model was about twice that of the experiment, which 
could contribute to the offset observed in the post-cracking 
stiffness. This deterministic analysis with uniform material 
properties was submitted as an entry for the prediction 
competition organized by Collins et al.6 before the physical 
testing began. The crack pattern, also shown in Fig. 17, was 
captured reasonably well.

Fig. 14—Finite element model inputs with spatial variation of concrete material properties.

Fig. 15—Experimental crack pattern and Kriging map of collected UPV data.

Fig. 16—Finite element mesh.
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Modeling spatial variability
The finite element model with uniform properties was 

updated to include the spatially variable properties shown 
in Fig. 14. An additional input file read in scaling factors 
that changed the compressive strength, tensile strength, and 
modulus of elasticity of the original model to match that of 
the measured test data. The FE model predicted a maximum 
load of 725 kN (163 kip) and a deflection at ultimate of 12.7 
mm (0.5 in.). Figure 18 compares the analytical load-deflec-
tion response with the experimental results. Figure 18 also 
shows the experimental crack (red) pattern overlaid with the 
predicted crack pattern (black).

The resulting crack patterns and load-deflection responses 
obtained from the analysis including spatial variability and 
the analysis with uniform mechanical properties were almost 
identical, deviating only after the peak load. Most likely, 
the minimal difference between modeling techniques can 
be attributed to the underlying assumptions of the selected 
software. In the program used in this study, the compres-
sive strength of an element is reduced when the crack width 
passes a given threshold. This is intended to simulate the loss 
in aggregate interlock when the crack widths become large. 
It the current formulation, the maximum crack width check 
is appropriate for capturing failure of concrete sections with 
no transverse reinforcement; however, it results in a model 
where the peak load is highly sensitive to the maximum 
crack spacing calculated in the analysis.

Stochastic analysis
Stochastic simulation was conducted on PLS4000 to 

assess the sensitivity of the load-deformation response to 
the material input parameters. A total of 175 simulations 
were conducted for the specimen.

Three stochastic input parameters were compared against 
four load-deformation response metrics. The selected 
metrics were the ultimate load, the deflection at ultimate 
loading, the initial uncracked stiffness, and the cracked stiff-
ness. The ultimate load and corresponding displacement 
were determined by finding a local maximum that results 
in a change in tangent slope and a drop from the local peak 
load of greater than 10%. The uncracked and cracked stiff-
ness coefficients were determined by linear regression. For 

Fig. 17—Load-deflection for FE analysis with uniform prop-
erties versus experimental results.

Fig. 18—Load-deflection for FE analysis with spatial varia-
tion versus experimental results.

Table 4—Finite element model material properties

Color/material ID fc′/fy (MPa) Ec/Es (MPa) εc′/εu × 10–3 ft′/fu (MPa) t/As (mm/mm2) Description

Concrete 1 40 28,800 2.13 2.17 250 Concrete West 
span

Concrete 2 40 28,800 2.13 2.17 250 Concrete East 
span

Steel 3 500 200,000 5.00 600 250 Bearing plate 
steel

Bearing 4 N/A 28,800 N/A N/A 250 Bearing material

Steel 5 573 20,000 14 685 6300 Bottom bars

Steel 6 522 20,000 17 629 900 Top bars

Steel 7 522 20,000 17 629 300 Vertical bars

Note: fc′ is compressive strength; fy is yielding strength; Ec/ Es is concrete/steel modulus of elasticity; ε′c is strain at peak stress; εu is ultimate strain; ft′ is concrete tensile strength; fu 
is steel ultimate strength; t is thickness; and As is steel cross-sectional area; 1 MPa = 145 psi; and 1 mm = 0.04 in.
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the cracked portion of the load-deformation response, the 
cracked portion was isolated by removing all data with a 
deflection of less than 4 mm and all data above 75% of the 
ultimate deflection. An example of the automated retrieval 
of the four metric is shown in Fig. 19.

The three main stochastic parameters included in the 
simulations were the compressive strength, the tensile 
strength, and the modulus of elasticity. Each of these param-
eters was assumed to be an independent random variable for 
the simulation; however, the mean tensile strength and mean 
modulus of elasticity were calculated based on the compres-
sive strength. Additional information on the stochastic anal-
ysis approach is summarized in Appendix F and presented 
in detail elsewhere.22 The correlation coefficients for these 
three parameters with the four selected metrics were calcu-
lated. The correlation coefficients are a useful tool to deter-
mine which input parameters influence the load-deforma-
tion predictions. The correlation coefficients are shown in 
Fig. 20.

It can be seen from the results that the ultimate load and 
corresponding displacement are heavily influenced by the 
distribution of the tensile strength. The correlation coef-
ficient for tensile strength and ultimate load is 0.92. This 
suggests that the tensile strength is the main contributor 
to the stochastic variation in member strength. The failure 
of an unreinforced section in VecTor2 is influenced by the 
maximum crack spacing and the tension softening response. 
The maximum crack spacing is constant for this analysis 
and thus, the tension response, which is directly related to 
the tensile strength, governs the variability. As previously 
mentioned, the compressive strength is generated inde-
pendently of the tensile strength. The correlation coefficient 
between the compressive strength and the tensile strength is 
–0.052 which confirms the independence of the sampling. It 
is generally accepted that a correlation between the tensile 
strength and the compressive strength exists, and the correla-
tion coefficient for the compressive strength typically should 
not be as low as shown in Fig. 20.

The initial stiffness is highly correlated with the modulus 
of elasticity. This is expected as the behavior is essentially 
linear elastic until significant cracking occurs. The tensile 
strength is also correlated with the initial stiffness, with a 
correlation coefficient of 0.47. Analytically, when cracking 
develops, the structure will retain stiffness until larger, 
wider cracks form. These larger cracks are what result in the 
cracked stiffness observed in the load-deformation response. 
However, the smeared cracks influence the initial stiffness 
of the load-deformation response and thus, a correlation is 
observed. The post-cracking stiffness appears to be indepen-
dent of the input parameters. It likely is a function of the 
location of the wide cracks and the longitudinal reinforce-
ment, which is only partially influenced by the spatially vari-
able input parameters.

A plot of the experimental results with the stochastic 
simulation is shown in Fig. 21. This chart illustrates a few 
trends in the simulation. The initial stiffness and cracked 
stiffness of the experimental results are well captured by 
the stochastic simulations. The average concrete cylinder 
strength at the test date was 43.4 MPa (6295 psi). The simu-
lation mean compressive strength was 38.5 MPa (5584 psi). 
Thus, the mean simulated peak load of 652 kN (147 kip) was 
considered to be reasonably close to the experimental peak 
load of 685 kN (154 kip).

Fig. 19—Automated retrieval of simulation metrics.

Fig. 20—Correlation coefficients for PLS4000 simulation 
results.

Fig. 21—Stochastic simulation results versus experimental 
load-deflection response.
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The peak load and peak deflection were both found to be 
normally distributed random variables. Confidence inter-
vals at a 99% confidence level for peak load and associated 
deflection were calculated as:

 509 kN (114 kip) ≤ PUlt. ≤ 795 kN (178 kip) (13)

 8.15 mm (0.321 in.) ≤ δ@PUlt.
 ≤ 12.43 mm (0.489 in.) (14)

The stochastic simulation reveals the large variability in 
strength and load-deflection response that may be present 
in this structure, were it built in the field. When performing 
stochastic simulations with the program, the full interac-
tion between stochastic inputs and simulation outputs can 
be analyzed. Multiple failure modes can be identified and 
disaggregated, and lower bound estimates for deflection or 
resistance can be established. These estimates are useful for 
designing capacity protected elements or structural elements 
with stringent deflection tolerances. Additionally, the results 
of a stochastic simulation can be used in a reliability analysis.

CONCLUSIONS
Cracking in reinforced concrete is inherently stochastic. 

The cracks form at a lowest energy state as a combina-
tion of applied tensile stress and material weakness. This 
study measured the spatial variation present within a large 
shear-critical concrete specimen containing no shear rein-
forcement. The study succeeded in identifying statistical 
properties of the reinforced concrete. The collected UPV 
data provided evidence that the strength and failure mode 
of the unreinforced span is partially affected by the material 
variability. Both large shear cracks occurred between local 
planes of weakness observed within the middle layer of the 
concrete. This suggests that the propagation of shear cracks 
is influenced by zones of weakness in the concrete, and not 
just by the prevailing stress conditions.

UPV measurements have been identified as an adequate 
means of measuring material properties within the specimen 
and could be used to provide insight into how spatial varia-
tion affects a population of structures.

A model with uniform material properties may not capture 
the exact crack pattern, however a reasonable estimate of 
the load-deflection can be obtained with careful selection 
of model parameters. In the analyses conducted herein, the 
inclusion of spatial variation did not affect the failure mode 
significantly for the one specimen examined.

Future work on this topic should investigate the influence 
of spatial variation on the response of structures subjected to 
symmetric loading. In a symmetrically loaded shear-critical 
concrete member, spatial variation may have a significant 
effect on the location and propagation of the failure crack. 
In a uniform analysis, a large shear crack will form on both 
sides of the structure simultaneously. This deviates from 
experimental results, in which typically a single crack will 
form on one side of the specimen.

For the variations in concrete properties that can be 
expected in large field structures, there is a substantial 
influence on cracking pattern, stiffness, ultimate strength, 
and potentially even in the failure mode. This should be 

recognized when assigning confidence to the design strength 
of large shear-critical structures.

AUTHOR BIOS
Mark D. Hunter is an Associate Principal at Quinn Dressel Associ-
ates in Toronto, ON, Canada. He received his BASc from the University 
of Waterloo, Waterloo, ON, Canada, and his MASc from University of 
Toronto, Toronto, ON, Canada. His research interests include stochastic 
finite element analysis of reinforced concrete structures.

Anca C. Ferche received her PhD from the University of Toronto in 2020. 
Her research interests include performance assessment and analysis of 
concrete structures, structural implications of deterioration mechanisms, 
and sustainability of concrete structures.

Frank J. Vecchio, FACI, is a Professor in the Department of Civil and 
Mineral Engineering at the University of Toronto. He received the following 
ACI awards: Structural Research Award (1998), Structural Engineering 
Award (1999), Wason Medal (2011), Joe Kelley Award (2016), and Arthur 
J. Boase Award (2020). His research interests include advanced constitutive 
modeling and analysis of reinforced concrete, assessment and rehabilita-
tion of structures, and response to extreme loads.

ACKNOWLEDGMENTS
The authors would like to acknowledge IC-IMPACTS and NSERC for 

funding support provided to this project. The authors would also like to 
acknowledge P. Quach, E. Bentz, and M. Collins for their generous sharing 
of information related to PLS4000, which was being done concurrent with 
this work. Lastly, the authors wish to acknowledge D. Panesar for sharing 
her UPV testing equipment. Without the generous contributions of the 
above, the present work could not have been completed.

REFERENCES
1. Mirza, S. A.; Hatzinikolas, M.; and MacGregor, J. G., “Statistical 

Descriptions of Strength Of Concrete,” Journal of the Structural Division, 
V. 105, No. 6, 1979, pp. 1021-1037. doi: 10.1061/JSDEAG.0005161

2. Bartlett, F. M., and MacGregor, J. G., “Statistical Analysis of the 
Compressive Strength of Concrete in Structures,” ACI Materials Journal, 
V. 93, No. 2, Mar.-Apr. 1996, p. 158-168

3. Unanwa, C., and Mahan, M., “Statistical Analysis of Concrete 
Compressive Strengths for California Highway Bridges,” Journal of 
Performance of Constructed Facilities, ASCE, V. 28, No. 1, 2014, pp. 
157-167. doi: 10.1061/(ASCE)CF.1943-5509.0000404

4. Stewart, M. G., “Spatial Variability of Pitting Corrosion and Its Influ-
ence on Structural Fragility and Reliability of RC Beams in Flexure,” 
Structural Safety, V. 26, No. 4, 2004, pp. 453-470. doi: 10.1016/j.
strusafe.2004.03.002

5. Li, Y., “Service Life Prediction And Repair of Concrete Structures 
with Spatial Variability,” HERON, V. 52, No. 4, 2007, pp. 251-268.

6. Collins, M. P.; Bentz, E. C.; Quach, P. T.; and Proestos, G. T., “The 
Challenge of Predicting the Shear Strength of Very Thick Slabs,” Concrete 
International, V. 37, No. 11, Nov. 2015, pp. 29-37.

7. Quach, P., “Understanding and Safely Predicting the Shear Response 
of Large-Scale Reinforced Concrete Structures,” master’s thesis, 2016, 
University of Toronto.

8. Hunter, M. D., “Towards Stochastic Finite Element Analysis of Rein-
forced Concrete Structures,” MASc. Thesis, 2016, University of Toronto, 
Toronto, ON, Canada.

9. Panesar, D. K., and Chidiac, S. E., “Ultrasonic Pulse Velocity for 
Determining the Early Age Properties of Dry-Cast Concrete Containing 
Ground Granulated Blast-Furnace Slag,” Canadian Journal of Civil Engi-
neering, V. 34, No. 5, 2007, pp. 682-685. doi: 10.1139/l07-039

10. Nguyen, N. T.; Sbartaï, Z.; Lataste, J.; Breysse, D.; and Bos, F., 
“Assessing the Spatial Variability of Concrete Structures Using NDT Tech-
niques – Laboratory Tests and Case Study,” Construction and Building Mate-
rials, V. 49, 2013, pp. 240-250. doi: 10.1016/j.conbuildmat.2013.08.011

11. Stein, M. L., Interpolation of Spatial Data: Some Theory for Kriging, 
1999, New York, Springer.

12. ACI Committee 318, “Building Code Requirements for Structural 
Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American 
Concrete Institute, Farmington Hills, MI, 2019, 520 pp.

13. CSA A23.3-14, “Design of Concrete Structures,” CSA Group, 
Mississauga, ON, Canada, 2014, 456 pp.

14. Bartlett, F. M., and MacGregor, J. G., “Assessment of Concrete 
Strength in Existing Structures,” Structural Engineering Report No. 198, 
1994, University of Alberta, Edmonton, AB, Canada.



262 ACI Structural Journal/March 2021

15. Scanlon, A., and Mikhailovsky, L., “Strength Evaluation of An 
Existing Concrete Bridge Based on Core and Non-Destructive Test Data,” 
Canadian Journal of Civil Engineering, V. 14, No. 2, 1987, pp. 145-154. 
doi: 10.1139/l87-026

16. Koide, H.; Akita, H.; and Tomon, M., “Size Effect on Flexural Resis-
tance Due to Bending Span of Concrete Beams.” Proceedings of the Third 
International Conference on Fracture Mechanics of Concrete Structures, 
1998, Freiburg, Germany, pp. 2121–2130.

17. VTAG, VecTor Analysis Group, Nonlinear Finite Element Analysis 
Software for Reinforced Concrete Structures, 2019, http://vectoranalysis-
group.com/.

18. Wong, P. S.; Vecchio, F. J.; and Trommels, H., “VecTor2 and Form-
Works User’s Manual,” Technical Report, Department of Civil Engineering, 
University of Toronto, Toronto, ON, Canada, 2013, 318 pp.

19. Vecchio, F., and Collins, M., “The Modified Compression Field 
Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal 
Proceedings, V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.

20. Vecchio, F., “Disturbed Stress Field Model for Reinforced Concrete: 
Formulation,” Journal of Structural Engineering, ASCE, V. 126, No. 9, 
2000, pp. 1071-1077. doi: 10.1061/(ASCE)0733-9445(2000)126:9(1070)

21. Comite Euro-International Du Beton, “CEB—FIP Model Code for 
Concrete Structures,” Brussels, Belgium, 1978.

22. Hunter, M. D.; Ferche, A. C.; and Vecchio, F. J., “Stochastic Finite 
Element Analysis of Shear-Critical Concrete Structures,” ACI Structural 
Journal, accepted for publication..



 1

APPENDIX 

The Appendix contains additional material supporting the data and discussions contained in 

the journal article entitled “Influence of Spatial Variability of Concrete in Large Shear-Critical 

Structures.” 

Appendix A: Competition results  
 

 

Fig. A – Comparison of predictions of failure point load with test result. (taken from Quach2) 
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Appendix B: Slab strip thickness 
 

  
(a) (b) 

Fig. B.1 – (a) Histogram and fitted PDF of thickness data. (b) Empirical and fitted CDF of 

thickness data. 

 

 

Fig. B.2 – Semivariogram of slab strip thickness. (Note 1 mm = 0.04 in.) 
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Appendix C: Concrete cylinder data analysis 
 

 

Fig. C.1 – Residuals from regression model. (Note: 1 MPa= 145 psi, 1 m/s=3.28 ft/s) 

 

 
Fig. C.2 – Empirical cumulative distribution function and fitted distribution for residuals. 

(Note: 1 MPa= 145 psi) 
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Appendix D: PLS4000 UPV data analysis  
 

  
(a) (b) 

Fig. D.1: Experimental UPV data and fitted distributions. (a) Histogram and PDF. (b) 

Empirical and fitted CDF. (Note: 1 m/s=3.28 ft/s) 

 

 

Fig. D.2: Fitted spherical semivariogram for experimental data. 
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Appendix E: Kriging maps calculation 

Stein11 presents a summary on how the kriging maps are calculated. The procedure described 

in this Appendix was used to produce kriging maps for the ultrasonic pulse velocity at the 

centre of each of the finite elements in the mesh.  

The collected data were assumed to be part of a realization of a random field Z which takes 

the form shown in Eq. F1: 

𝑍 𝑥 𝑚 𝑥 𝛽 𝜀 𝑥  (F1) 

where m(x) is the mean function, ε(x) is a random field with a mean of zero with a known 

covariance structure, and β is a vector of unknown coefficients. Kriging maps can be referred 

to as universal or ordinary. In the case of an ordinary kriging map, the parameter m(x) is 

assumed to be equal to 1.0 and thus the mean is an unknown constant. In the case of a universal 

kriging map, the mean function is variable with position. The spatial variation in the point 

loaded strip is assumed to be an ordinary kriging and thus the mean is constant. Kriging maps 

are also referred to as the best unbiased linear predictor. The best unbiased linear predictor 

assumes that the prediction 𝑍 𝑥 , for a vector of points, 𝑥 , that lie between collected 

observations, can be represented by the form: 

𝑍 𝑥 𝜆 𝜆 𝑍 (F2) 

where 𝑍  𝑍 𝑥 , … ,𝑍 𝑥  is a set of observed values of the random field at points x1 to 

xn. This predictor is subject to two constraints: 

𝐸 𝜆 𝜆 𝑍 𝐸 𝑍 𝑥  (F3) 

𝜆 𝜆 𝑀𝛽 𝑚 𝑥 𝛽  (F4) 

where the measured values of the mean function 𝑥  to 𝑥  is 𝑀 𝑚 𝑥 , … ,𝑚 𝑥 . Thus, 

it is concluded that: 

𝜆 0 (F5) 
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𝑚 𝑥  𝑀 𝜆 (F6) 

The solution of λ that solves this constrained minimization problem is then considered the 

best unbiased linear predictor for 𝑍 𝑥 , calculated as: 

𝑍 𝑥  𝜆 𝑍 (F7) 

If a vector v is selected such that: 

𝑍 𝑥  𝜆 𝑣 𝑍 (F8) 

then it can be shown that: 

𝑚 𝑥  𝑀 𝜆 𝑣 𝑀 𝜆 𝑀 𝑣  (F9) 

Because m x M Tλ, it can be seen that M Tv = 0. In addition, Stein11 shows that the best 

linear prediction for the weighting function is given by: 

𝜆 𝐾 𝑘 (F10) 

where K = cov{Z, ZT} and k = cov{Z, Z(x0)}. Thus, if a vector μ is selected such that 𝑀μ 0, 

it follows that: 

𝐾𝜆 𝑘 𝑀μ (F11) 

In matrix form these two conditions take the form: 

𝐾 𝑀
𝑀 𝑂

𝜆
𝜇

𝑘
𝑚 𝑥  (F12) 

Where O is a matrix of zeros. This can be rearranged to: 

𝜆
𝜇

𝐾 𝑀
𝑀 𝑂

𝑘
𝑚 𝑥  (F13) 

Solving for λ yields: 

𝜆 𝐾 𝐾 𝑀 𝑀 𝐾 𝑀 𝑀 𝐾 𝑘 𝐾 𝑀 𝑀 𝐾 𝑀 𝑚 𝑥  (F14) 

Thus, using the calculated data, unbiased estimates for values between collected data is 

estimated.  However, the covariance values between the measured values Z and the locations 

of prediction 𝑍 𝑥  need to be known. As such, the autocorrelation function calculated from 

the fitted semivariogram is used to produce the k matrix.  
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Appendix F: Stochastic analysis approach 

Each stochastic simulation consisted of a random field using Latin hypercube sampling for 

the specified concrete strength, assumed to be 30 MPa (4350 psi). The stochastic analysis 

parameters for concrete are outlined in Table F.1. The steel properties were assumed to be 

deterministic. 

Table F.1 – Stochastic simulation input properties for concrete 
Variable Model Mean Value 

[MPa] 
Standard 

Deviation [MPa] 
Coefficient of 
Variation [%] 

Compressive Strength 

𝑓 30 𝑀𝑃𝑎 
Bartlett and 

MacGregor14 38.57 7.14 18.6 

Tensile Strength   
    𝑓 1.81 𝑀𝑃𝑎 

Modified 
Mirza et al.4 1.81 0.23 12.7 

Modulus of Elasticity 

𝐸 25084 𝑀𝑃𝑎 
Modified 

Mirza et al.4 25084 2006.7 8.0 

Note: 1 MPa = 145 psi. 

The distributions from Table F.1 are the global distributions. The spatial variation due to 

random fields for each simulation was based on the measured properties of PLS 4000 specimen. 

For a finite element simulation, each element can be assumed to take on a random value of a 

material property. However, it is rational to assume that a correlation exists between adjacent 

elements. To capture the spatial correlation between adjacent finite elements, the Gaussian 

random field was adopted. Random fields are spatially correlated stochastic samples which 

follow a specified distribution. Three parameters as required for generating a random field: the 

number of included eigenvalues, the random field variance, and the correlation length. 

As discussed by Hunter3, 80 eigenvalues are adequate in generating random fields for the 

correlation lengths typically observed in concrete. A correlation length of 1200 mm (47.2 in.) 

and a random field variance of 1.0. The random field is then scaled to meet the global 

distribution for concrete. 

 


