DISTURBED STRESS FIELD MODEL FOR REINFORCED
CONCRETE: FORMULATION

By F. J. Vecchio'

ABSTRACT: A conceptual model is presented for describing the behavior of cracked reinforced concrete ele-
ments, representing a hybrid formulation between a fully rotating crack model and a fixed crack model. The
formulation described builds on the concepts of the modified compression field theory, treating cracked concrete
as an orthotropic material with unique stress-strain relationships in compression and tension. Advancements in
the formulation, relative to the modified compression field theory, include a new approach to the reorientation
of concrete stress and strain fields, removing the restriction that they be coincident, and an improved treatment
of shear stresses on crack surfaces. New sets of equilibrium, compatibility, and constitutive relations are for-
mulated accordingly, and alternative crack slip models are discussed. The proposed theory is shown to yield
improved simulations of response in specific situations where the previous formulation was found to produce
inaccuracies. This paper describes the formulation of the theory at the fundamental level.

INTRODUCTION

In finite-element analysis of reinforced concrete, the devel-
opment of nonlinear elastic procedures has generally pro-
gressed along two lines: rotating crack models and fixed crack
models. With rotating crack models, it is assumed that a grad-
ual reorientation occurs in the direction of cracks, as dictated
by the loading or material response. Along with the change in
crack direction, a gradual reorientation is assumed to occur in
the principal stress and principal strain directions in the con-
crete. Examples of such formulations are those by Foster
(1992), Ayoub and Filippou (1998), and Barzegar-Jamshidi
and Schnobrich (1986). Conversely, with fixed crack models,
crack directions remain fixed in the direction of first cracking.
In some formulations, if the stress conditions dictate, discrete
new cracks may form at alternate inclinations. An important
aspect of the fixed crack approach is the determination of the
shear stresses that necessarily develop on crack surfaces and
the shear slips that occur as a result. Fixed crack models have
been proposed by Okamura and Maekawa (1991), Kaufmann
and Marti (1998), and others. Both the rotating crack and the
fixed crack models have met with varying degrees of success.

The modified compression field theory (MCFT) was pro-
posed about 20 years ago to describe the behavior of cracked
reinforced concrete elements subjected to in-plane forces (Vec-
chio and Collins 1982, 1986). It was essentially a fully rotat-
ing, smeared crack model that represented concrete as an or-
thotropic material. Equilibrium, compatibility, and stress-strain
relationships were formulated in terms of average stresses and
average strains; however, also central to the theory was the
consideration given to local stress conditions at crack loca-
tions.

In the MCFT formulation, cracked reinforced concrete was
treated as distinctly different from plain uncracked concrete,
with new constitutive relations derived from a comprehensive
series of panel element tests. The proposed compression soft-
ening relationship reflected the observation that cracked con-
crete, when simultaneously subjected to high tensile strains in
the direction normal to the compression, exhibited reduced
strength and stiffness relative to uncracked uniaxially com-
pressed concrete. Additionally, a tension stiffening formulation
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was proposed to represent the presence and influence of the
postcracking average tensile stresses in the concrete between
the cracks.

Subsequent to the formulation of the basic theory, work was
undertaken to implement MCFT into various design code pro-
cedures and advanced analysis tools. The general design
method for shear was formulated and implemented into the
Canadian Code [Canadian Standards Association (CSA)
1994]. As well, a general design method was described by
Collins et al. (1996), simplifying the application of the theory
to design of beam elements. Concurrently, various nonlinear
finite-element procedures were developed incorporating
MCFT (Vecchio et al. 1996).

Since its development, MCFT has been applied to numerous
situations involving a wide range of structural types, details,
and loading conditions. Subsequent tests done on the panel
element tester and shell element tester, involving elements sub-
jected to plane stress conditions, exceed 150 in number (Fig.
). In addition, a number of test programs involving more
complex structural subassemblies have been undertaken. In an-
alyzing these test specimens, MCFT was generally found to
provide consistently reliable predictions of strength, load-
deformation response, and failure mode to accuracies accept-
able in most engineering contexts. A summary to this effect
was provided by Vecchio et al. (1996). It should also be noted
that, in the 20 years since its formulation, MCFT has remained
essentially unchanged.

Although the accuracy and reliability of MCFT have been
generally good, experience has revealed some deficiencies in

(a) (b)

FIG. 1. Testing of Panel Specimens: (a) Panel Element Tester;
(b) Shell Element Tester
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FIG. 2. Shear Stress-Strain Responses from Two Tests: (a)
Panel PV23; (b) Panel PB20

specific situations. With respect to panel elements, a deterio-
ration in accuracy is noticed under conditions as follows:

* Shear strength and stiffness are generally underestimated
for panels containing heavy amounts of reinforcement in
both directions, in panels subjected to high biaxial com-
pressions in addition to shear, or in panels where the re-
inforcement and loading conditions are such that there is
no rotation of the principal stress or strain conditions (e.g.,
P: = p, and proportional loading). Shown in Fig. 2(a), for
example, are the observed and computed shear responses
of Panel PV23, which was reinforced with P = py, =
1.75% and was subjected to biaxial compression and
shear in the proportion ¢.:0,:T1 = —0.32:—0.32:1. In this
panel, the degree of cracking was minimal and there was
no rotation of the crack direction from the onset of crack-
ing to the failure point. Note that the ultimate shear
strength of the panel is significantly underestimated. This
result is consistent with observations by Kollegger and
Mehthorn (1990) and others, who tested panels where the
principal loading directions were coincident with the re-
inforcement directions and, hence, did not involve a reori-
entation of the stress-strain fields.

* Shear strength and stiffiiess are generally overestimated
for uniaxially reinforced panels or for panels containing
very light reinforcement in the transverse direction. Con-
sider Panel PB20, tested by Bhide and Collins (1989); this
panel was reinforced with p, = 1.2% and p, = 0% and
was subjected to uniaxial tension and shear in the pro-
portion o:0,:1 = 2:0:1. As seen in Fig. 2(b), the observed
postcracking strength and stiffness are measurably less
than predicted. In such panels, significant orientation of
the stress-strain fields and crack directions was observed

along with visible signs of slipping and crushing along
the crack surfaces.

Reduced accuracy also has been observed in shear-critical
beams containing very little or no transverse reinforcement
(i.e., <0.05%). Here, the fully rotating crack model imbedded
in MCFT allows for a significant orientation of the stress-strain
fields. In such beams, this may result in overestimated ductil-
ity, and overpredicted or underpredicted strengths, depending
on the structural and loading details. [It was shown that im-
posing two additional limit conditions on the MCFT formu-
lations improves the accuracy of the modeling under these
circumstances (Vecchio 2000).]

An original simplifying assumption of MCFT was that the
directions of the average principal strain remained coincident
with the directions of the average principal stresses in the con-
crete. The data from the initial test series clearly showed that
this was strictly not the case [Fig. 3(a); note that 6 = 90° —
U). The observed tendency was for the change in the principal
stress direction to lag behind the change in the principal strain
direction. Shown in Fig. 3(b) are the angles of inclination for
the stress and strain fields for Panel PV19, reinforced with p,
= 1.8% and p, = 0.7% and subjected to pure shear (00,7 =
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FIG. 3. Deviation of Principal Stress and Principal Strain Di-
rection: (a) Data Reported with Original Formulation of MCFT
(Vecchio and Collins 1982); (b) Results for Panel PV19
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0:0:1). Prior to cracking, both fields were inclined at 45° rel-
ative to the reinforcement directions. After first cracking, there
was an abrupt increase in the inclination of the principal strain
direction but little change in the concrete stress field direction.
Thereafter, both inclinations gradually increased, with a rela-
tively constant differential (lag) present. After yielding of the
transverse reinforcement, the reorientation of the stress field
accelerated in accordance with the pattern of the change in the
principal strain direction. This behavior was observed in most
of the other test panels. Given that the pattern was one where
the reorientation of directions of stress and strain seemed to
be linked and not much different and given the significant
simplification it added to the computational aspects of the the-
ory, it was decided to make the assumption of coaxiality of
stresses and strains. It is this assumption that, in large part,
gives rise to the inaccuracies of MCFT for situations noted
previously.

Another difficulty of MCFT, as originally constituted, stems
from the crack shear check. The cracks in the concrete are
assumed to align with the average principal stress directions;
hence, the average shear stresses in the directions orthogonal
to the crack are necessarily zero. However, at the crack sur-
face, local stress conditions are different and can give rise to
nonzero shear stresses on the crack surface (Vecchio and Col-
lins 1986). The MCFT checks the magnitude of these local
stresses; if they exceed a limit value, a reduction is made to
the magnitude of the postcracking average tensile stresses that
can be sustained. In reality, the relationship between the con-
crete tensile stresses and local shear stresses is not a direct
one. Further, although shear stresses may be induced on the
crack surface, the MCFT compatibility relations make no al-
lowance for actual shear slip along the crack. Last, the crack
shear check represents computational complexity that is dis-
parate relative to the simplicity of the remainder of the for-
mulation. The crack shear check has been the one aspect of
the theory least well understood by others and often has been
ignored in their implementations of MCFT, although it is a
relatively important component of the model.

The disturbed stress field model (DSFM), proposed in this
paper, attempts to redress the two main weaknesses in the
MCFT computational model: the enforced alignment of prin-
cipal stress and strain directions, and the handling of crack
shear stresses. It will be shown that a more comprehensive
consideration of these mechanisms helps reduce the systematic
inaccuracies found in MCFT under specific circumstances.
However, it also will be shown that MCFT remains a simple
but powerful computational model that is applicable with suf-
ficiently good accuracy in most practical situations.

OVERVIEW AND CONCEPTUAL MODEL

Consider a reinforced concrete structural element that has
sustained cracking as a result of externally applied loads. The
shear wall depicted in Fig. 4 will be used for illustrative pur-
poses. In such elements, load is carried through the structure
by internal stress fields in the concrete and by strut or tie forces
in the reinforcement. In the concrete, both compression stress
fields and tension stress fields typically contribute to the load
resisting mechanism.

Narrowing the focus to a smaller region of the wall, con-
sider an area spanning several cracks but one where the sec-
tional forces can be considered relatively constant. In Fig. 4,
this region corresponds to the Section 1-1 with Points A and
B located at cracks. (Note that the orientation of the section
line is taken normal to the crack direction.) Consider the var-
iation of stresses that might occur over this distance (also
shown in Fig. 4). The concrete tensile stresses f., will approach
zero at the crack locations but will be greater than zero be-
tween the cracks due to tension stiffening and other mecha-
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FIG. 4. Nature of Disturbed Stress Fields in Cracked Rein-
forced Concrete

nisms. Compensating for the reduced concrete tensile stresses
at the cracks, the stresses in the reinforcement f; increase lo-
cally to maintain force equilibrium. If the reinforcement
crosses the crack at a skew angle, the locally increased rein-
forcement stresses will give rise to shear stresses on the crack
surface v, as will be discussed later. However, because 1-2
reference axis represents the orientation of the concrete aver-
age principal stresses, the average concrete shear stress will
necessarily be zero. Finally, the concrete compressive stresses
f. will be increased somewhat near cracks due to aggregate
interlock mechanisms and equilibrium requirements. Hence, it
is convenient to regard the internal force resisting mechanism
in terms of average stress fields but while recognizing that
these fields are disturbed by the presence of cracks.

With nonzero local shear stresses present at the crack inter-
face, a certain degree of rigid body shear slip will occur along
the crack. This localized deformation must be considered in
addition to the average (smeared) strains resulting from the
constitutive response of the concrete to the average stresses.
As will be shown, the inclusion of the slip deformations results
in a deviation between the orientation of the concrete average
principal stresses and that of the apparent concrete average
principal strains.

A viable analytical model can be constructed by combining
the local and average behaviors through the development of
appropriate equilibrium, compatibility, and constitutive rela-
tions. The formulation of DSFM will proceed accordingly.

EQUILIBRIUM CONDITIONS

Fig. 5(a) shows a reinforced concrete element subjected to
uniform stresses, [¢] = {0, 0, T,}, applied along the element



boundaries. The element is reinforced with any number of re-
inforcement components oriented at arbitrary angles to the el-
ement reference axes. The reinforcement is assumed smeared
and evenly distributed within the element. The problem at
hand is to calculate the resulting element behavior, including
load-deformation response, cracking patterns, internal stresses,
and failure mode.

The forces applied to the element are resisted by internal
stresses in the concrete and in the reinforcement. In this con-
text, it is necessary to examine element equilibrium on two
levels: in terms of average stresses smeared over the area of
the element and in terms of local conditions along the crack
surfaces.

In formulating element stiffness matrices for finite-element
analysis or in developing explicit equilibrium relations for cus-
tomized analysis or design procedures, it is convenient to re-
late average stresses to average strains. Concrete is treated as
an orthotropic material with rotating cracks; hence, the con-
crete average principal stresses f,, and f,, are parallel and per-

Reinforcement

Pisfy;s Espy O \G
2
L
N\ x
V—l—- \ X |-—fcx—-
Concrete o—— Jfe2 —= Jer
FARY 78 P A

(a) (b)

FIG. 5. Reinforced Concrete Element: (a) Reinforcement and
Loading Conditions; (b) Mohr’s Circle for Average Stresses in
Concrete
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FIG. 6. Equilibrium Conditions: (a) External Conditions; (b)
Perpendicular to Crack Direction; (c) Parallel to Crack Direction;
(d) Along Crack Surface

pendicular, respectively, to crack direction defined by the angle
6 in Fig. 6(a). Note that the average principal tensile stress f.,
is assumed to be present even after cracking, owing to tension
softening and tension stiffening mechanisms. Average stresses
also can be considered acting in the reinforcement; for the ith
reinforcement component, the average stress is denoted as f;,.
These average stress conditions are represented in Figs. 6(b
and c¢). However, it should be noted that they do not represent
conditions at any one point but rather average smeared con-
ditions. Hence the element equilibrium condition becomes

[o] = [D.][e.] + E [Dlile D

where n = number of reinforcement components; and [D,] and
[D,]; = concrete and reinforcement stiffness matrices, respec-
tively; and [€.] and [g,]; = net strains in the concrete and re-
inforcement components, respectively. For the special case
where the panel is orthogonally reinforced and the reinforce-
ment is aligned with the reference axes, the equilibrium equa-
tions become

0, =foo + pifn (2)
o, =f, +pfi 3)
Tiy = Vory 4

The concrete stresses f,,, f.,, and v, can be conveniently de-
termined from the principal stresses using the Mohr’s circle
of stress shown in Fig. 5(b).

Crack interfaces can be considered planes of weakness in
the continuum, and it is necessary to check that the average
stresses can be transmitted across the cracks. It will be as-
sumed that the component of the concrete principal tensile
stresses due to tension stiffening is zero at the crack location.
To transmit the average stress f,,, local increases in the rein-
forcement stresses are necessary. These local stresses are de-
noted as f,,, as shown in Fig. 6(d). The magnitude of f;, that
can be transmitted via this mechanism is limited by the reserve
capacity of the reinforcement, which is given by the difference
between the average stresses and the yield stresses. Hence

n

fa =2, pilf, — f) cose, )

where p; = reinforcement ratio; f, = average stress; f, = yield
stress for the ith reinforcement component; and the angle 6,
= difference between the angle of orientation of the reinforce-
ment, a,, and the normal to the crack surface 0:

8, =6 — a ©)

Local reinforcement stresses f,., are determined from local
reinforcement strains g, (calculation of the latter are dis-
cussed in the following section). These local reinforcement
stresses must satisfy the equilibrium condition that the aver-
age concrete tensile stresses be transmissible across the cracks;
that is

n

> 0l fur — f)c08%, = £, %)

i=1

The local increases in reinforcement stresses, at crack lo-
cations, lead to the development of shear stresses along the
crack surfaces v,. Equilibrium requirements produce the fol-
lowing relationship:

v, = 2 0 fur, — £,)cOS B, *sin 6, ®)
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COMPATIBILITY RELATIONS

Consider the compatibility conditions in a reinforced con-
crete element that is experiencing deformations composed of
both continuum straining and discontinuous slip along crack
surfaces. Such an element is depicted in Fig. 7. The continuum
straining is the result of mechanical compliance to stress and
to the smearing of crack widths over a finite area. The slip
component is the result of rigid body movement along a crack
interface. Using extensometers of a gauge length sufficient to
span several cracks, one could make a measure of the average
strains within the element. Relative to a reference x,y-system,
the measured strains would intrinsically contain both compo-
nents of deformation. These measured (total) or ‘“‘apparent”
strains will be denoted as [€] = {€, €, v, }. The apparent in-
clination of the principal strains 6, will thus be calculated

eg=1tan“[ Yo ] ©)

2 € — €,

Decoupling the two strain effects, the actual (net) strains
within the continuum will be denoted as [e.] = {&., &, Y}
It is these strains, shown in Fig. 7(a), that are to be employed
in appropriate constitutive relations to determine the average
stresses from the average strains for the concrete. For this pur-
pose, the principal strains are determined from the net strains
by using the standard transformations

(Scx + E:cy) 1
scls ecZ =——0=*=

3 5 (e — €, + Yo' (10)

The actual inclination of the principal strains in the continuum
6 and the assumed inclination of the principal stresses 6,
will be

1 cxy
6, =0==tan"’ [—l—-—] an
2 €x — &,

Consider next the discrete slip occurring along the crack
surfaces [Fig. 7(b)]. Assume that the cracks are inclined in the
direction of the net principal tensile strain 8, that the cracks
have an average width and spacing of w and s, respectively,
and that the slip along the crack surface is of magnitude 3,.
One can define an average shear slip strain as follows:

Ys =T (12)
s
Using a Mohr’s circle construction, the slip strain can be re-
solved into orthogonal components relative to the reference
system; thus [€°] = {&; € <.} where

€ = —v,/2-sin(20) (13)
€ = v,/2-sin(26) (14)
Yo = Y. €08(28) (15)

In addition, the element may- have experienced strains due
to elastic or plastic offsets. The elastic strain offsets [€2] will
include effects due to thermal expansion, mechanical expan-
sion (e.g., Poisson’s effect and aggregate alkali reactivity), and
shrinkage. Plastic offsets [€7] will arise from cyclic loading
conditions or loading into postpeak levels. The apparent (total)
strains will be the summation of the continuum stress-induced
strains, the shear slip strains, and the elastic and plastic offset
strains. Hence, one obtains the following compatibility con-
dition:

[e] = [e] + [€] + [€] + [€7] (16)

For the purposes of this paper, the elastic and plastic offsets
will be taken as zero. Rigorous consideration of the offset
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FIG. 7. Compatibility Conditions: (a) Deformations due to Av-
erage (Smeared) Constitutive Response; (b) Deformations due
to Local Rigid Body Slip along Crack; (c) Combined Deforma-
tions

strains are easily handled in the manner described by Vecchio
(1992).

The “lag” in the rotation of the principal stresses in the
continuum, relative to the rotation of the apparent principal
strains, will be defined

AG =8, — 0, amn

In relating the apparent strain condition to the actual ori-
entation of the stress and strain field within the continuum, the
following relation is particularly useful:

Ys = Yo - C0s 20, + (€, — £)-sin 20, (18)

The reinforcement is assumed perfectly bonded to the con-
crete. Hence, the average strain in a reinforcement component
is calculated from the total strains as follows:

g,

gt &g, €, —
g, = +

, 5 5 "cos 20; + % sin 2o, + €2 (19)

where o; = angle of orientation of the reinforcement; and eg
= initial prestrain in the reinforcement. At crack locations, the
local stresses and strains in the reinforcement must increase to
compensate for the local reduction in the concrete average
tensile stress. It is assumed that a local incremental strain Ag,,,
occurs in the principal stress direction such as to satisfy the
equilibrium condition represented by (7). The local strain in
the reinforcement will thus be

€, = €, + Ag,,,c08%0,, (20)



Given nominal crack spacings in the reference x- and y-direc-
tions, s, and s,, the average crack spacing in the cracked con-
tinuum can be estimated

§=————— 21

The values s, and s, can be estimated from standard crack
spacing formulations. From the average crack spacing, the av-
erage crack width w can then be calculated from the average
tensile strain as follows:

w==¢€,"S (22)

CONSTITUTIVE RELATIONS

The compression response of cracked reinforced concrete is
characterized by significant degrees of softening arising from
the effects of transverse cracking, as shown by Vecchio and
Collins (1986). The principal compressive stress in the con-
crete f., is found to be a function of not only the principal
compressive strain, but also of the coexisting principal tensile
strain. This influence is captured by the reduction factor B,
as follows:

1 =1.0 (23)

Be=1Tcc™

In examining data collected from over 150 test panels (Vecchio
and Collins 1993), the best correlations were obtained when
the factor C, was made a function of the ratio €.,/€., as fol-
lows:

C,=0.35(—¢./e, — 0.28)°° (24)

The above is the preferred form for use in finite-element for-
mulations. However, for easier implementation into design
procedures, accuracy is not much reduced when using a sim-
pler form that is a function of € only. In updating the MCFT
formulation, the following was proposed:

C,=027(e./eq — 0.37) (25)

The factor C, accounts for the influence of slippage on the
cracks. If slip is taken into account, then the rate of compres-
sion softening due to transverse cracking must be reduced to
compensate for the greater “apparent” strains obtained. That
is, slip on the cracks introduces softness into the concrete re-
sponse; thus, less stiffness degradation can be attributed to the
tensile strain effects. This becomes apparent when one pays
closer scrutiny to the test data. Shown in Fig. 8(a) is the com-
pression softening data from all panels tested, as previously
reported (Vecchio and Collins 1993). The original formulation
for the softening parameter [(23) with C, = 1.0] is seen to
provide excellent correlation. However, shown in Fig. 8(b) are
the data for only those panels that contained equal reinforce-
ment (p, = p,), were subjected to proportional loading, and
failed by concrete shear/crushing prior to yield of reinforce-
ment, namely, PV23, PV24, PV25, PV27, and PV28. Panels
in this latter group, owing to the conditions cited, experienced
no rotation of crack direction during the course of testing. It
is notable and significant that the response for these panels is
appreciably stiffer and stronger than that for the test panels as
a whole. Examining conditions at the ultimate load stages, it
is found that using C, = 0.55 in (23) produces improved fit;
hence, this is the value adopted for the DSFM. If slip on the
cracks is not being explicitly taken into account in the element
compatibility relations, as when using the MCFT formulation,
then C, = 1.0 is used.

The factor B, is used to define both the peak stress f, and
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FIG. 8. Compression Softening of Cracked Concrete: (a) Data
from All Test Panels (Vecchio and Collins 1993); (b) Data from
Panels Experiencing No Crack Rotation

the strain at peak stress €, in the compression response of the
concrete. Hence, if using the €,,/€., formulation, then

o= —Bafe (26)
€, = —BaEo (27
If using the €, formulation, then €, = —&,. (Note that €, and

f, are negative quantities.) As previously suggested (Vecchio
and Collins 1993), a suitable compression response curve is
given by the following:

n-(e./€
Ja=lr G — 1)( +2 (;.)z/ep)"" (28)
where
n=0.80 — f,/17 (29)
k=10, g,<€,<0; k=(067 — f,/62), €,<¢, (30ab)

See Fig. 9(a); note that the compression response is assumed
to decay to zero when the crack width reaches 5 mm, for
reasons discussed elsewhere (Vecchio 2000).

For concrete in tension, prior to cracking, a linear relation
is used; that is

fa=Ee&, 0<g,<Eeg, 31)

where E, = initial tangent modulus of the concrete; and €., =
cracking strain. Recent experience with concrete made from
Toronto-area aggregates suggest the following relationship for
estimating the concrete tensile strength f;:
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fi =0.65(f) (32)

After cracking, concrete can continue to carry tensile
stresses as a result of two independent mechanisms: tension
softening and tension stiffening. Tension softening refers to
the fracture-associated mechanisms described by Darwin and
others. It is particularly significant in concrete structures con-
taining little or no reinforcement; for example, beams contain-
ing no web steel. Here, the concrete postcracking tensile stress
associated with tension softening f2, is calculated

:1 =f,’ [1 _ (ecl - 8cr)jl (33)

(&, — €,)

where the terminal strain €, is calculated from the fracture
energy parameter G, and characteristic length L, as follows:

g, =20 ﬁr— 34)
AL,
The parameter G; is taken as having a constant value of 75 N/
m. The resulting concrete tension softening formulation is il-
lustrated in Fig. 9(b). This linear formulation is sufficient for
most applications, but more accurate nonlinear models can be
used.

Postcracking tensile stresses in the concrete also arise from
interactions between the reinforcement and the concrete. In
areas between cracks, load is transferred from the reinforce-
ment to the concrete via bond stresses, producing significant
levels of average tensile stress in the concrete. As previously
done in the MCFT, these concrete tension stiffening stresses
are modeled as follows:

» fi
| = 3
T (35)

Previously, the MCFT used ¢, = 200 for relatively small ele-
ments or elements containing a closely spaced mesh of rein-
forcement and ¢, = 500 for larger-scale elements. However,
Bentz (1999) showed that the degree of tension stiffening is
dependent on, among other factors, the reinforcement ratio p
and the rebar diameter d,; he formulated an improved rela-
tionship accordingly. Modifying the Bentz equation to account
for direction-dependent behavior, the following relationship is
suggested for the tension stiffening coefficient:

¢ =22m (36)
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where

n

LI > 0o 0,) 37
m 5T 4y,
This model is illustrated in Fig. 9(c). Note that f?, is limited
to the amount that can be transmitted across cracks, as pre-
viously discussed [(5)]. The resulting average principal tensile
stress in the concrete is the larger of the two values defined
above. Hence

fa= max(f?l,ffl) (38)

A trilinear stress-strain relation is used to model the re-
sponse of reinforcement in tension or compression. Hence

fi=Eg, O0<eg<e; fi=f, & <& <€, (39ab)
fo=f + Eu(e. — €4), €n<g <e; £,=0, £>€, (39¢d)

where f, = yield strength; E; = modulus of elasticity; E,, =
strain hardening modulus; €, = yield strain; €, = strain at start
of strain hardening; and ¢, = ultimate strain. This formulation,
illustrated in Fig. 9(d), is used for the calculation of both av-
erage and local stresses (f; and f..,), given the corresponding
reinforcement strains (g, and €.,).- The model can be modified
to reflect Bauschinger effect under cyclic load conditions or
to reflect curvilinear response for prestressing steel.

SLIP MODEL

Numerous studies are reported in the literature quantifying
the amount of slip &, along a crack surface as a function of
the acting shear stress v,;. These formulations are typically also
functions of the crack width w, aggregate size a, and concrete
compressive cylinder strength f! or cube strength f... The re-
lationship adopted here is that of Walraven (1981), taking the
stiffness portion of his formulation as follows:

U,
3 = = 4
T 18w + (0.234w %7 — 0.20) £, (40)

Once the slip displacement & has been found, (12) is used to
determine the crack slip shear strain v?.

Shear-slip models of the type above can be easily imple-
mented into the analysis model and provide reasonably accu-
rate simulations of response in most cases. However, there are
two difficulties that arise when implemented into the analytical
formulation suggested herein. First, although they correctly
recognize that some initial slip is required before the gap be-
tween opposing crack surfaces is closed and traction is devel-
oped, including the initial slip component in the analysis pro-
cedure proves to be numerically problematic. Second, in the
case of elements that are locally unreinforced (for example, in
the web regions of beams that contain no shear reinforcement),
the equilibrium equations previously presented result in a cal-
culation of zero shear stresses on the crack surface [(8)]. That
is, no account is made of the shear stresses that arise from
aggregate interlock or other mechanisms. Zero shear stresses
necessarily result in a calculated zero shear slip, and this is
intuitively unsatisfactory.

A supplemental approach is to relate the changes in direc-
tion of the principal stresses to the changes in the direction of
the apparent principal strains. As was seen in Fig. 3(b) for
Panel PV19, and also observed in many other tests involving
panels with reinforcement crossing the cracks at skew angles,
the stress field rotation tends to lag behind the strain field
rotation. This lag is established soon after first cracking and
remains relatively constant in the earlier stages of loading until
one of the reinforcement components begins to yield. Obser-
vations made from the test panels indicated that the initial lag



is approximately between 5° and 10°, depending on the rein-
forcement conditions.

Relative to the initial crack direction 6, (i.e, inclination of
principal stresses/strains at first cracking), the rotation in the
apparent principal strains A8, is determined first according to
the prevailing load and material conditions at the current load
state

A8, =6, — 6, 41)

Allowing for the rotation lag, the change in inclination of the
principal stress direction A@, can next be found

A8, = (A8, — 8°) for |AB]> 6° (42a)
A9, = A9, for |A@| =< #f 42b)

where the constant lag 8° is taken as 5° for biaxially reinforced
elements, 7.5° for uniaxially reinforced elements, and 10° for
reinforced elements. The inclination of the stress field at the
current load stage is then calculated

6, =0, + A6, (43)

Then, using (18), the crack shear slip strain y® can be deter-
mined. The weakness in this approach, apart from being based
entirely on empirical evidence and lacking some objectivity,
is that at later load stages the rotation lag ceases to be rela-
tively constant and begins to escalate.

Combining the two approaches into a hybrid formulation
effectively eliminates the deficiencies of each. The crack slip
shear strain can be taken as the maximum values; hence

¥, = max(ys, v7) 44)

At early stages of loading or in unreinforced elements the con-
stant rotation lag criterion will govern as the slip is largely
influenced by the lateral closing of the gap across the opposing
crack surfaces. At more advanced stages of loading, the ex-
plicit expression for the crack shear slip will become critical
as the slip is then largely dictated by the shear stresses that
develop on the crack surfaces. The hybrid approach results in
a model that captures the relevant mechanisms and one that
closely corresponds to observed behavior

CONCLUSIONS

The DSFM is proposed as an alternative smeared crack
model for the analysis of cracked reinforced concrete. Com-
patibility, equilibrium, and constitutive response are formu-
lated in terms of average stresses and average strains, with
particular attention given to compression softening and tension
stiffening mechanisms. However, an important aspect of the
theory also is to consider the local conditions at crack loca-
tions, because the presence of cracks creates disturbances in
the stress fields that can influence behavior. The key advance-
ment in the theory is the inclusion of discrete slip on the crack
surfaces in the formulation of compatibility relations.

The analytical procedure that results from the slip formu-
lation is one that occupies a middle ground between fixed
crack models and rotating crack models, capturing the
strengths of each. Unlike conventional fixed crack models, the
DSFM allows for a gradual and progressive reorientation of
concrete principal stress direction (and crack direction), how-

ever, delayed to a certain extent. Unlike common rotating
crack models, the DSFM allows for the divergence of principal
stress and principal strain directions. In both respects, this is
more consistent with observed behavior.

The DSFM is an extension of the MCFT. However, by ex-
plicitly including crack shear slips in the compatibility rela-
tions, the resulting improvements relative to the MCFT are

* The inclinations of the principal stresses and principal
strains are no longer necessarily equal.

* Behavior and failure conditions influenced by crack shear
slip are better represented.

* The troublesome check on the crack shear stress is elim-
inated.

» The degree of softening of the compression response, as
a result of cracking per se, is substantially reduced and
more consistent with that reported by others.
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