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Abstract 

The approach for the high-cycle fatigue life prediction of a reinforced concrete structural element 

using VecTor2 nonlinear finite element analysis is presented. Mechanisms governing fatigue 

damage progressions are briefly discussed, and the implementation of the models that account 

for these mechanisms in VecTor2 software is treated subsequently. In addition, an illustrative 

solution for a single element subjected to shear fatigue loading is given. The VecTor2 nonlinear 

finite element analysis software, which incorporates fatigue damage models, allows for the 

prediction of the fatigue residual capacity of an element after a given number of loading cycles. 

The prediction of the instance at which steel reinforcement will fracture can also be obtained 

from the analyses results. 
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Notation 

The following symbols are used (may not be defined in the text): 

a,b,c : material parameters 

C: material constant = 2 x 10−13  

𝐶𝑓 : frequency factor     

D : damage   

𝑑𝑏𝑖: rebar diameter 

𝐷𝑐: concrete stiffness matrix         

𝐷𝑐𝑟 : critical damage  

𝐷𝑓𝑡 : concrete tensile strength damage  

𝐷𝑐: reinforcement stiffness matrix         

𝐷𝑡𝑒 : concrete tensile secant modulus damage 

𝐸𝑐: elastic modulus of concrete  

𝐸𝑐1: secant modulus of concrete in tension 

𝐸𝑐2: secant modulus of concrete in compression 

𝐸𝑠: elastic modulus of steel reinforcement 

𝐺𝑐: shear modulus 

f : frequency         

𝑓𝑐1: effective tensile stress of concrete 

𝑓𝑐2: effective compressive stress of concrete 

𝑓𝑐,𝑇𝑆: average tensile stress in concrete due to tension stiffening effect 

𝑓𝑐𝑥: normal stress in concrete in horizontal direction 

𝑓𝑐𝑦: normal stress in concrete in vertical direction 
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𝑣𝑐𝑥𝑦: shear stress in concrete in horizontal direction 

𝑓𝑐2𝑚𝑎𝑥: peak compressive stress in concrete considering compression softening effect 

𝑓𝑒ℎ: tensile stress due to mechanical anchorage effect of end-hooked steel-fibre 

𝑓𝑓 : tensile stress at crack due to steel fibre 

𝑓𝑝 : initial compressive strength 

𝑓𝑠𝑡: tensile stress due to frictional bond behaviour of steel fibre 

𝑓𝑡𝑝 : initial concrete tensile strength 

𝑓′
𝑐
: compressive strength of concrete 

fc
∗: degraded compressive strength 

𝑓𝑠𝑐𝑟𝑖: local stress in reinforcement at crack 

𝑓𝑠𝑖: average stress in steel reinforcement 

𝑓𝑡: residual tensile strength of concrete 

𝑓𝑡
∗: degraded strength at which concrete cracks 

k: post-decay parameter for stress-strain response of concrete in compression 

N : number of cycles 

n: curve-fitting parameter for stress-strain response of concrete in compression 

n: material constant = 3                

𝑁𝑓 :  numbers of cycles at failure   

𝑁𝑖𝑗: interval of cycles considered  

𝑠𝑐𝑟: crack spacing  

𝑇: period of fatigue cycle  

𝑡𝑑: direction coefficient (= 0.6 or 1.0)       

v: Poisson’s ratio  
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vci : shear stress 

vci,cr : shear stress at cracked concrete plane 

Vf: steel fibre volume ratio 

𝑤𝑐𝑟: crack width 

𝛼𝑎𝑣𝑔 : coefficient to relate tensile stress at a crack due to steel fibres with average tensile stress 

𝛼𝑖: inclination of reinforcement  

𝛽 : material constant   

𝛽2 : material constant           

∆: deformation  

∆𝜀1𝑐𝑟: change in strain at crack 

∆𝑓: fatigue stress 

𝛿𝑠 : crack slip         

𝜀𝑐1: net tensile strain 

𝜀𝑐2 : net compressive strain 

𝜀∗
𝑐 : strain corresponding to the degraded compressive strength 

𝜀𝑠𝑐𝑟𝑖: local strain in the reinforcement 

𝜀𝑠𝑖: average strain in steel reinforcement         

𝜀𝑑: irreversible fatigue strain    

𝜀𝑝: initial strain corresponding to the initial compressive strength 

𝜀1𝑐𝑟: local strain at crack  

𝛾2: parameter for high stress level 

𝛾𝑠 : shear strain due to crack slip 

𝜃, 𝜃c : inclination of principal strain direction 
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 𝜃𝑛𝑖: angle between the reinforcement direction and the normal to the crack  

𝜌𝑖 : reinforcement ratio  
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CHAPTER 1: FATIGUE DAMAGE MECHANISMS 

1.1 Introduction 

The fatigue loading of a reinforced concrete element is well-known to result in a progressive 

deterioration of concrete. Once concrete cracking occurs, reinforcement crack propagation at the 

intersection with the cracked concrete planes may occur depending on the magnitude of the 

induced stress in the steel reinforcement. However, robust models required for predicting the 

fatigue life of these elements are not readily available. This is attributable to the complex 

degradation mechanisms for steel and concrete composites inherent in any fatigue damage process 

(Isojeh et al., 2017e). 

To fully account for fatigue damage mechanisms, concrete integrity deterioration, irreversible 

strain accumulation, and reinforcement crack growth should be considered. Herein, the mechanism 

are incorporated into the constitutive, compatibility and equilibrium equations of the Disturbed 

Stress Field Model (DSFM) (Vecchio, 2000) analysis algorithm to predict the fatigue residual 

capacity of a structural element. The fatigue life of a structural element corresponds to the instance 

when the fatigue residual capacity becomes equal to the applied fatigue load (Isojeh et al., 2017e). 

The damage mechanisms are considered subsequently. 

1.1.1 Strength Degradation 

Results of the investigations reported in the literature have shown that concrete strength and 

stiffness reduce progressively after fatigue loading cycles have been applied (Cook and 

Chindaprasirt, 1980; Schaff and Davidson, 1997; Edalatmanesh and Newhook, 2013; Isojeh et al., 

2017a). To account for this, concrete strength may be modified using a damage factor 𝐷𝑓𝑐. 

Similarly, the stiffness or secant modulus of concrete may be modified using a corresponding 
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damage factor 𝐷𝑐𝑒. Models used for these cases are given thus 

                                             D =  𝐷𝑐𝑟  Exp [𝑠 (
∆𝑓

𝑓𝑐
′ − 𝑢)]𝑁𝑣                                           (1.1)                                     

                                  u = 𝐶𝑓 (1 − 𝛾2 𝑙𝑜𝑔(𝜁 𝑁𝑓 𝑇))                                          (1.2)         

                                             v = 0.434 s 𝐶𝑓(𝛽2(1 − 𝑅))                                (1.3)  

where 𝛽2= 0.0661-0.0226R and 𝛾2 = 2.47 x 10−2.  

𝜁 is a dimensionless coefficient which is taken as 0.15 for a sinusoidal cycle (Torrenti et al., 2010; 

Zhang et al., 1998), 𝐶𝑓 accounts for the loading frequency, and 𝛾2 is a constant which accounts 

for high stress level. From Zhang et al. (1996) on influence of loading frequency, 

                                             𝐶𝑓 = a𝑏−𝑙𝑜𝑔𝑓+ c                                             (1.4) 

where a, b and c are 0.249, 0.920 and 0.796 respectively, and f is the frequency of the fatigue 

loading. Depending on the value of s estimated from Figure 1.1, D may be taken as 𝐷𝑓𝑐 or 𝐷𝑐𝑒. 

𝐷𝑐𝑟 is a critical damage value taken as 0.35 for concrete strength and 0.4 for fatigue secant modulus 

(Isojeh et al., 2017a). 

 

Fig. 1.1 – Estimation of damage parameter s. 
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1.1.2 Irreversible strain accumulation 

Compressive and tensile plastic strains accumulate in concrete under fatigue loading (Holmen, 

1982; Gao and Hsu, 1998; Isojeh et al., 2017b). However,the magnitude in tension is usually small, 

and it is reasonable to assume it to be null. The irreversible compressive strain may be considered 

as a prestrain and incorporated into the strain compatibility equation. Based on an experimental 

investigation conducted on the strain evolution of concrete in compression (Isojeh et al., 2017b), 

models were proposed for the irreversible fatigue strain (𝜀𝑑) as follows: 

For 0.3𝑁𝑓 ≤N≤ 𝑁𝑓   (𝑁𝑓 is the number of cycles to failure and N is the fatigue loading cycles) 

                                                 𝜀𝑑 =𝜀𝑑𝑜 + 𝜀𝑑1 + 𝜀𝑑2                                                                    (1.5) 

𝜀𝑑𝑜 is the strain due to loops centerlines convergence,  𝜀𝑑1 is the strain due to the hysteresis loop 

inclination, and 𝜀𝑑2 is the strain  due to the minimum stress at the turning point of fatigue loading. 

                                          𝜀𝑑𝑜 = −(
𝑓𝑐

′+(𝜎𝑚𝑎𝑥 𝑅)

𝐸
) − 0.3 𝜀𝑐

′                      (1.6) 

                                                 𝜀𝑑1 = 𝑘2𝑞 (
𝐷𝑓𝑐

√𝐷𝑐𝑒
)                                                   (1.7)  

         𝜀𝑑2 = 
(𝜎𝑚𝑎𝑥 𝑅)

𝐸𝑠𝑒𝑐
                             (1.8) 

E is the fatigue secant modulus, 𝑘2 is 1.0 for high strength concrete and 2.0 for normal strength 

concrete, q is equal to −0.3 𝜀𝑐
′ , R is the stress ratio, 𝜎𝑚𝑎𝑥 is the maximum stress level, and 𝐸𝑠𝑒𝑐 is 

the static secant modulus at an instance after fatigue loading. The fatigue secant modulus can be 

taken as 1.5𝐸𝑠𝑒𝑐. 

The first stage of deformation under fatigue loading is characterized by cyclic creep. As such, the 

irreversible strain for any number of cycles less than 30% of the cycles leading to failure (𝑁𝑓) is 
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estimated as a function of the irreversible strain at 0.3, where the irreversible strain at 0.3 is 

estimated using Equations 1.5 to 1.8. Hence, for N < 0.3𝑁𝑓,  

                                                   𝜀𝑑 =  𝜀𝑑3 (
𝑁

0.3𝑁𝑓
)
𝛿

                                          (1.9) 

𝜀𝑑3 is the irreversible strain (𝜀𝑑) value at 0.3𝑁𝑓. The value of 𝛿 (fatigue creep constant) can be 

taken as 0.3. The implementation of the irreversible strain model into constitutive models for 

normal and high strength concrete are discussed subsequently. 

1.1.3 Reinforcement Crack Growth  

From the Paris crack growth law (Paris et al., 1961), the propagation of a reinforcing bar crack, up 

to a depth resulting in fatigue fracture, can be predicted using a parameter representing the stress 

intensity factor range (∆K). This parameter is generally expressed as a function of the stress range 

(∆𝜎), crack size (a) and a shape factor (Y) for the reinforcing bar (Paris et al., 1961; Rocha and 

Bruhwiler, 2012; Herwig et al., 2008, Isojeh and Vecchio, 2016). The crack depth (𝑎𝑦) after a 

given number of cycles can be estimated as  

                                                   𝑎𝑦 = (
𝑎𝑖

𝛼

1−[𝑁𝑖𝑗(𝐶.𝛼.𝜋
𝑛
2 .𝑌𝑛.∆𝜎𝑛.𝑎𝑖

𝛼)]
)

1

𝛼

                                                (1.10) 

where 𝛼 = (n/2)-1; C = 2 x 10−13; and n = 3.0 (Hirt and Nussbaumer, 2006). 

𝑎𝑖 and 𝑎𝑦 are the previous and current crack depth for the interval of cycles considered (𝑁𝑖𝑗), 

respectively. In order to estimate 𝑎𝑦 using Equation 1.10, the value of 𝑎𝑖 must be known, which is 

the previous crack depth (Paris et al., 1961).  

An equation for the shape factor (Y) required in Equation 1.10, proposed in BS 7910 (2005) as a 

function of the crack depth, is given in Equation 1.11.                                                    



5 

 

                                                     Y = 

1.84

𝜋
{𝑡𝑎𝑛(

𝜋𝑎

4𝑟
)/(

𝜋𝑎

4𝑟
)}

0.5

𝑐𝑜𝑠(
𝜋𝑎

4𝑟
)

∙ 

                                                    [0.75 + 2.02 ∙ (
𝑎

2𝑟
) + 0.37 ∙ {1 − 𝑠𝑖𝑛 (

𝜋𝑎

4𝑟
)}

3

]                        (1.11) 

 The initial crack depth (𝑎𝑖) expressed as 𝑎𝑜 at the onset of fatigue loading is obtained iteratively 

using Equation 1.12: 

                                                   𝑎𝑜 = 
1

𝜋
 (

∆𝐾𝑡ℎ

𝑌∆𝜎𝑙𝑖𝑚
)
2

                                                                         (1.12) 

r is the radius of the reinforcing bar, a is the crack depth, ∆𝜎𝑙𝑖𝑚 corresponds to the fatigue limit 

stress at which fatigue damage will not initiate, and ∆𝐾𝑡ℎ is the threshold stress intensity factor.  

                                                    ∆𝜎𝑙𝑖𝑚 = 165 - 0.33(R x 𝜎𝑚𝑎𝑥) (Amir et al., 2012).               (1.13)                         

The crack does not propagate for stress intensity values lower than ∆𝐾𝑡ℎ. The ∆𝐾𝑡ℎ  value is taken 

as 158 N𝑚𝑚2 (Farahmand and Nikbin, 2008) or as a function of the stress ratio R (Dowling, 1993).  

∆𝐾𝑡ℎ = 191 N𝑚𝑚−3/2 for R ≤ 0.17, or 222.4 (1-0.85R) N𝑚𝑚−3/2 , for R ≥ 0.17.  

where R is the stress ratio (𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥).  

 

Fig. 1.2 - Crack growth on a reinforcing bar cross section. 

The fractured surface area of a reinforcing bar can be assumed as shown in Figure 1.2. The crack 

depth (𝑎𝑦) is assumed to evolve from an initiation point up to the instant when the reserve capacity 

of the reinforcement at the crack is no longer sufficient for tensile stress transfer.  
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From Figure 1.2, the fractured area (A(𝑎𝑦) ) is estimated as (Isojeh and Vecchio, 2016): 

                                                      A(𝑎𝑦) = 
𝜃𝑟

90
𝜋𝑟2 − 𝑟𝑠𝑖𝑛𝜃𝑟(2𝑟 − 𝑎𝑦)                                               (1.13) 

                                                       𝜃𝑟 = 𝑐𝑜𝑠−1 (
𝑟−0.5𝑎𝑦

𝑟
)                                                              (1.14) 

 The residual area (𝐴𝑟𝑒𝑠) of a reinforcing bar after crack propagation to a given number of cycles 

is obtained as: 

                                                        𝐴𝑟𝑒𝑠 = 𝐴𝑜 - A(𝑎𝑦)                                                                 (1.15) 

The reinforcement crack growth factor (𝑍𝑂), referred to in other sections as the steel damage 

parameter, is obtained thus: 

                                                        𝑍𝑂 = 
𝐴𝑟𝑒𝑠

𝐴𝑜
                                                                                 (1.16) 

where 𝐴𝑜 is the cross-sectional area of the uncracked rebar. This is estimated for all reinforcing 

bars traversing the concrete crack, provided the induced stresses are higher than the threshold value 

for crack initiation. 

Prior to reinforcement crack propagation, the number of cycles resulting in a localised plasticity-

crack nucleation or crack initiation may also be included using Masing’s model and the SWT 

approach (Socie et al., 1984; Dowling and Thangjitham, 2000, Isojeh et al., 2017d). To account 

for this, the value of the reinforcement crack growth factor is assumed to be a value of 1.0 in 

Equation 1.16 until the estimated crack initiation cycles is reached. 

1.2 Damage Constitutive Models for Residual Strength of Concrete 

1.2.1 Normal Strength Concrete 

The Hognestad stress-strain curve for normal strength is used for estimating the effective stress 

of a concrete element under a monotonic loading, provided the concrete peak stress (or 

compressive strength), induced effective strain, and the strain corresponding to the peak stress are 
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known. Based on the assumption of the intersection of the peak stress of a damaged concrete 

specimen with the softening portion of the stress-strain envelope (Isojeh et al., 2017b), the 

Hognestad parabolic equation was modified to obtain the strain corresponding to the degraded 

strength and, as such, a damage constitutive model was developed for concrete under fatigue 

loading. This was achieved by modifying the peak strength and the strain corresponding to the 

peak stress (Figure 1.3). The modification is given thus 

 

                                                            (
εc2

εp
)
2

−
2εc2

εp
+

𝑓𝑐2

𝑓𝑝
 = 0                        (1.17) 

 

Fig. 1.3 - Modified Stress-strain curve for damaged concrete. 

𝑓𝑐2 is the principal compressive stress, 𝑓𝑝 is the peak concrete compressive stress (equal to 𝑓𝑐
′) , 𝜀𝑝 

(equal to 𝜀𝑐
′) is the compressive strain corresponding to 𝑓𝑝, and 𝜀𝑐2 is the average net strain in the 

principal compressive direction. 

Based on the assumption (1 − 𝐷𝑓𝑐) 𝑓𝑝 = fc
∗, and 𝑓𝑐2= fc

∗                                         

     (
𝜀2
∗

εp
)
2

−
2𝜀2

∗

εp
+

(1−𝐷𝑓𝑐) 𝑓𝑝

𝑓𝑝
 = 0                                (1.18) 

(
𝜀2
∗

εp
)
2

−
2𝜀2

∗

εp
+ (1 − 𝐷𝑓𝑐) = 0                  (1.19) 

 𝜀∗
2 is the total strain at peak stress intersection point with stress-strain envelope, and fc

∗ is the 
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degraded concrete strength. Solving the equation for the total strain corresponding to the new 

degraded strength gives 

 𝜀2
∗= εp (1+√𝐷𝑓𝑐)             (1.20) 

From Figure 1.3, it can be observed that the value of  𝜀2
∗ also includes the strain offset ( 𝜀𝑑), hence 

the strain corresponding to the peak stress of the degraded concrete strength 𝜀𝑐
∗ is given as: 

  𝜀𝑐
∗ =𝜀2

∗ - 𝜀𝑑              (1.21) 

𝜀𝑐
∗ = εp (1+√𝐷𝑓𝑐) - 𝜀𝑑            (1.22) 

where 𝜀𝑑 can be obtained from Equations 1.5 to 1.9,  εp is equal to the concrete compressive strain 

corresponding to the peak stress of undamaged concrete, and 𝐷𝑓𝑐 (concrete strength damage factor) 

can be estimated as described by Isojeh et al. (2017a) (also given in Equations 1.1 to 1.4). 

1.2.2 High Strength Concrete 

Popovics stress-strain model was modified for fatigue-damaged concrete for high strength concrete 

(Isojeh et al., 2017b). The approach is similar to that for normal strength concrete. However, to 

obtain the strain corresponding to the degraded strength, an iterative method is required such as 

the Newton-Raphson method. For high strength plain concrete (𝑓𝑝 ≥ 40 MPa) (using Popovics’ 

equation), the fatigue constitutive equation is given in a simplified form as:  

                                                      𝑓𝑐2=𝑓𝑝(1 − 𝐷𝑓𝑐) 
𝑛(𝜀𝑐2/εp)

(𝑛−1)+(𝜀𝑐2/εp)𝑛𝑘                                                     (1.23) 

where according to Collins et al. (1997): 

                                                      n = 0.80-𝑓𝑝/17 (in MPa)                                           (1.24) 

                                                      k = 0.6 −
𝑓𝑝

62
                𝑓𝑜𝑟    𝜀𝑐2 < 𝜀𝑝 < 0                                (1.25) 

                                                      k = 1                             𝑓𝑜𝑟    𝜀𝑐2 < 𝜀𝑝 < 0                                (1.26) 
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CHAPTER 2: IMPLEMENTATION OF DAMAGE MODELS IN DSFM 

2.1 Disturbed Stress Field Model 

The capability of the Disturbed Stress Field Model  (Vecchio, 2000; Vecchio,  2001)  in  

predicting  the  behaviour  of  reinforced   concrete structures subjected to different loading 

conditions is well documented (Vecchio, 2001; Vecchio et al., 2001; Facconi et al., 2014; Lee 

et al., 2016). As an extension of the Modified Compression Field Theory (Vecchio and Collins, 

1986), the DSFM, founded on a smeared-rotating crack model, includes the consideration of 

deformation within concrete crack planes. The formulations of the DSFM can be adapted to allow 

for the consideration of the damage of concrete and the corresponding crack growth on steel 

reinforcement (longitudinal and transverse) intersecting a concrete crack under fatigue loading. 

The modification of these models are considered subsequently. The implementation of the 

fatigue damage mechanisms from Chapter 1 into the equilibrium, compatibility, and constitutive 

equations are considered herein.  

2.1.1 Equilibrium Condition 

In Figure 2.1, the normal stresses are denoted by 𝜎𝑥 and 𝜎𝑦 and the shear stress as 𝜏𝑥𝑦. From the 

average stresses in the element under static loading condition, the equilibrium condition based 

on the superposition of concrete and steel reinforcement stresses can be expressed as shown in 

Equations 2.1 to 2.3. 
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Fig. 2.1 – Reinforced concrete element (a) Loading conditions; (b) Mohr’s circle for average 

stresses in concrete. 

                                                    𝜎𝑥 = 𝑓𝑐𝑥 + 𝜌𝑥𝑓𝑠𝑥                                                                                (2.1) 

                                                    𝜎𝑦 = 𝑓𝑐𝑦 + 𝜌𝑦𝑓𝑠𝑦                                                                               (2.2) 

                                                     𝜏𝑥𝑦 = 𝑣𝑐𝑥𝑦                                                                                        (2.3) 

where 𝜌𝑥 and 𝜌𝑦 are the reinforcement ratios in the x- and y- directions, respectively. 

Using Mohr circle (Figure 2.1b), the stresses in the concrete composite (𝑓𝑐𝑥 , 𝑓𝑐𝑦, and 𝑣𝑐𝑥𝑦) can be 

obtained with known principal stresses (𝑓𝑐1, 𝑓𝑐2). The principal stresses are estimated from 

constitutive models which are functions of concrete strength, stiffness, and induced strains. As a 

result of fatigue loading, these parameters (strength and stiffness) degrade and strains accumulate; 

hence, the material stresses change correspondingly.   

2.1.1.1 Equilibrium of Stresses at a Crack 

Under static loading, stresses in the reinforcement at crack locations are higher than the values 

between cracks (average values) since the concrete tensile stress is zero at such locations. As a 

(a) (b) 
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result, shear stresses also develop on the surfaces at crack locations. 

Since fatigue crack propagation is a function of the stress values, its initiation tends to occur at a 

reinforcement region traversing the concrete cracks where the stresses are high. From Figures 

2.2(a) and 2.2(b), the general static equilibrium equations which involves steel fibre are given 

thus (Lee et al., 2016) 

 

 

 

 

 

 

 

Fig. 2.2 - Equilibrium conditions: (a) Parallel to crack direction; (b) Along crack surface. 

 

Fig. 2.3 - Equilibrium conditions along crack surface after reinforcement crack propagation. 

                                                    𝑓𝑐1 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑓𝑠𝑐𝑟𝑖 - 𝑓𝑠𝑖). 𝑐𝑜𝑠2𝜃𝑛𝑖 + (1-𝛼𝑎𝑣𝑔)𝑓𝑓𝑐𝑜𝑠𝜃𝑓              (2.4) 

                                                    𝑣𝑐𝑖,𝑐𝑟 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑓𝑠𝑐𝑟𝑖 – 𝑓𝑠𝑖). 𝑐𝑜𝑠𝜃𝑛𝑖  𝑠𝑖𝑛𝜃𝑛𝑖  - (1-𝛼𝑎𝑣𝑔)𝑓𝑓 𝑠𝑖𝑛𝜃𝑓  (2.5) 

(a) 
(b) 
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In Equations 2.4 and 2.5, (1-𝛼𝑎𝑣𝑔)𝑓𝑓 represents the contribution from steel fibre bridging a crack. 

𝛼𝑎𝑣𝑔 relates the tensile stress in steel fibre to the average principal tensile stress, while 𝑓𝑓 is a 

function of the equivalent bond strength due to the mechanical anchorage of the steel fibre and the 

friction bond strength of steel fibre (Lee et al., 2016). 

As cracks propagate in the reinforcement traversing a concrete crack, the area of reinforcement 

intersecting the crack reduces, hence resulting in lower reinforcement ratio at the crack region. To 

account for the progressive reinforcement ratio reduction due to fatigue loading, Equations 2.4 and 

2.5 are modified thus (Figure 2.3): 

                                                 𝑓𝑐1 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑍𝑂𝑓𝑠𝑐𝑟𝑖 - 𝑓𝑠𝑖). 𝑐𝑜𝑠2𝜃𝑛𝑖  +  

                                                 (1-𝛼𝑎𝑣𝑔)𝑓𝑓√1 − 𝐷𝑓𝑐  𝑐𝑜𝑠𝜃𝑓                                                          (2.6) 

                                                 𝑣𝑐𝑖,𝑐𝑟 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑍𝑂𝑓𝑠𝑐𝑟𝑖 - 𝑓𝑠𝑖). 𝑐𝑜𝑠𝜃𝑛𝑖  𝑠𝑖𝑛𝜃𝑛𝑖    

                                                - (1-𝛼𝑎𝑣𝑔)𝑓𝑓√1 − 𝐷𝑓𝑐  𝑠𝑖𝑛𝜃𝑓                                                        (2.7) 

𝑍𝑂 and 𝐷𝑓𝑐 are parameters representing reinforcement crack growth and plain or steel fibre 

concrete strength degradation, respectively.  

2.1.2 Compatibility Condition 

 In the Disturbed Stress Field Model, the total strain [𝜀] in an element comprises of the net strain 

[𝜀𝑐], plastic offset strain [𝜀𝑐
𝑝], elastic offset strain [𝜀𝑐

𝑜], and strain effect due to slip at crack [𝜀𝑐
𝑠]. 

As indicated in Chapter 1, the irreversible strain is also considered as a prestrain (𝜀𝑑 or [𝜀𝑐,2
𝑓𝑎𝑡

]). 

In the x-y direction, the total strain [𝜀] is 

                                                     [𝜀] = [𝜀𝑐] + [𝜀𝑐
𝑝] + [𝜀𝑐

𝑜] + [𝜀𝑐
𝑠] + [𝜀𝑐

𝑓𝑎𝑡
]                                   (2.8) 

                                                     [𝜀] = [𝜀𝑥, 𝜀𝑦, 𝛾𝑥 ]                                                                         (2.9) 
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                                                     [𝜀𝑐] = [𝜀𝑐𝑥, 𝜀𝑐𝑦, 𝛾𝑐𝑥 ]                                                                (2.10) 

                                                     [𝜀𝑐
𝑓𝑎𝑡

] = [𝜀𝑐𝑥
𝑓𝑎𝑡

, 𝜀𝑐𝑦
𝑓𝑎𝑡

, 𝛾𝑐𝑥𝑦
𝑓𝑎𝑡

]                                                       (2.11) 

From a strain transformation of the fatigue prestrain,  

                                                    𝜀𝑐𝑥
𝑓𝑎𝑡

 = 
1

2
 𝜀𝑐,2

𝑓𝑎𝑡
 (1 – cos 2𝜃)                                                        (2.12) 

                                                    𝜀𝑐𝑦
𝑓𝑎𝑡

 = 
1

2
 𝜀𝑐,2

𝑓𝑎𝑡
 (1 + cos 2𝜃)                                                        (2.13) 

                                                    𝛾𝑐𝑥𝑦
𝑓𝑎𝑡

 = 𝜀𝑐,2
𝑓𝑎𝑡

 sin 2𝜃                                                                    (2.14) 

From Mohr’s circle of strain, the principal strains from the net strains can be estimated as: 

                                                     𝜀𝑐1, 𝜀𝑐2 = 
(𝜀𝑐𝑥+𝜀𝑐𝑦

2
 ± 

1

2
 [(𝜀𝑐𝑥 − 𝜀𝑐𝑦)2 + 𝛾𝑐𝑥

2]
1/2

                    (2.15) 

The inclination of the principal strains in the concrete, 𝜃, is given by: 

                                                     𝜃 =   
1

2
 𝑡𝑎𝑛−1 [

𝛾𝑐𝑥

𝜀𝑐𝑥−𝜀𝑐𝑦
]                                                             (2.16) 

2.1.3 Constitutive Relation 

2.1.3.1 Concrete Constitutive Model 

The behaviour of cracked concrete in compression and the corresponding influences of transverse 

stresses and shear slip effects under static loading are well illustrated in Vecchio (2000). 

Constitutive models for plain and steel fibre reinforced concrete are usually given in terms of peak 

stresses and the corresponding strains at peak stresses. Fatigue constitutive models for plain 

concrete have been described in Chapter 1. Depending on the steel fibre volume ratio in concrete, 

the damage parameter s required in the damage model in Chapter 1 may also be obtained from 

Figure 2.4. 

For steel fibre concrete, the monotonic constitutive model proposed by Lee et al. (2016) was 

simply modified to account for fatigue damage; thus: 
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                                                      𝑓𝑐2 = 𝑓𝑐2𝑚𝑎𝑥 (1 − 𝐷𝑓𝑐) [
𝐴(𝜀𝑐2/εp)

𝐴−1+(𝜀𝑐2/εp)𝐵
]                                       (2.17) 

where: 

                                                      𝑓𝑐2𝑚𝑎𝑥 = 
𝑓𝑐

′

1+0.19(−𝜀𝑐1/𝜀𝑐2 −0.28)0.8    > 𝑓𝑐
′                                       (2.18) 

 

 

Fig. 2.4 - Damage parameter s for steel fibre secant modulus (A) and residual strength (B). 

The values for A and B in Equation 2.17 differ for the hardening and softening portion of the 

stress-strain envelope. From Lee et al. (2016), the values are given thus: 

For the pre-peak ascending branch,  

A = B = 1/[1-(𝑓𝑐
′/𝜀𝑐

′𝐸𝑐)                                                                                                            (2.19) 

For the post-peak descending branch,  

A = 1 + 0.723(𝑉𝑓𝑙𝑓/𝑑𝑓)
−0.957; B = (𝑓𝑐

′/50)0.064[1 + 0.882 (𝑉𝑓𝑙𝑓/𝑑𝑓)
−0.882]                        (2.20) 

The behaviour of cracked concrete has been considered so far. In an uncracked element, a linear 

relation for concrete in tension is modified. Thus 

                                                         𝑓𝑐1 = 𝐸𝑐(1 − 𝐷𝑡𝑒)𝜀𝑐1                                                           (2.21) 

where 𝐸𝑐 is the initial tangential modulus, and 𝜀𝑐1 is the principal tensile strain in the concrete. 

Compressive fatigue damage in an uncracked concrete element is generally considered 
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insignificant, since the induced compressive stress is usually small.  𝐷𝑡𝑒 is the damage of concrete 

stiffness in tension using Equations 1.1 to 1.4 in Chapter 1. However, tensile stresses are used in 

the models. 

Under fatigue loading, the effect of tension stiffening reduces progressively due to the evolving 

tensile strain in cracked concrete and reinforcement crack propagation. The coefficient 𝑐𝑓 in 

Equation 2.22 accounts for the influence of steel fibre (end-hooked), 

                                                         𝑓𝑐,𝑇𝑆= 
𝑓𝑡𝑝

1+√3.6𝑐𝑓.𝜀𝑐1 
                                  (2.22)  

𝑐𝑓= 0.6 + (1/0.034) ( 𝑙𝑓/𝑑𝑓)[(100𝑉𝑓)
1.5

/𝑀0.8]; M (bond parameter) = 𝐴𝑐/ (∑𝑑𝑏𝑠𝜋), in 

millimeters. 

For plain concrete, the value of 𝑐𝑓 reduces to 0.6. The tensile stress in steel fibre concrete is 

estimated as the sum of the tension stiffening effect and the stresses transmitted by steel fibre 

across cracks; hence, 

                                                         𝑓𝑐1 = 𝑓𝑐,𝑇𝑆 + (1-𝛼𝑎𝑣𝑔)𝑓𝑓 𝑐𝑜𝑠𝜃𝑓                                              (2.23) 

where 𝑓𝑐1 is the effective tensile stress in the concrete, 𝜀𝑐1 is the tensile strain of the concrete, 𝑑𝑏𝑖 

is the rebar diameter, 𝜃 is the inclination of principal strain direction, 𝛼𝑖 is the inclination of 

reinforcement, and n is the number of reinforcement directions. The second term in Equation 2.23 

is zero in the case of conventional reinforced concrete. 

The tensile stress in Equation 2.23 is required to be less or equal to the right-side of Equation 2.6. 

Further, the crack spacing model proposed by Deluce et al. (2014) is used to relate crack width to 

average tensile strain, while the shear slip model proposed by Vecchio and Lai (2004) is used to 

estimate the slip prestrain and deviation of steel fibre tensile stress. The models are given 

subsequently: 
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For steel fibre concrete,                         

                                                      𝑆𝑐𝑟 (average crack spacing) = 2(𝑐𝑎 + 
𝑠𝑏

10
) 𝑘3 + 

𝑘1𝑘2

𝑠𝑚𝑖
              (2.24) 

where 𝑐𝑎 = 1.5𝑎𝑔𝑔; 𝑘1 = 0.4; 𝑘2 = 0.25; 𝑘3 = 1 – [min(𝑉𝑓, 0.015)/0.015][1-(1/𝑘𝑓)];   

𝑎𝑔𝑔 is the maximum aggregate size, given in millimeters. 

                                                       𝑠𝑏 = 
1

√∑
4

𝜋

𝜌𝑠,𝑖

𝑑𝑏,𝑖
2  𝑐𝑜𝑠4𝜃𝑖𝑖

                                                                    (2.25) 

                                                       𝑠𝑚,𝑖 = ∑
𝜌𝑠,𝑖

𝑑𝑏,𝑖
 𝑐𝑜𝑠2𝜃𝑖𝑖  + 𝑘𝑓

𝛼𝑓𝑉𝑓

𝑑𝑓
                                            (2.26)               

For conventional reinforced concrete, 𝑆𝑐𝑟 =  
1

|𝑐𝑜𝑠𝜃|/𝑠𝑚𝑥 +|𝑠𝑖𝑛𝜃|/𝑠𝑚𝑦
  

                                                      𝛿𝑠 (crack slip) = 𝛿2√
𝜓

1−𝜓
                                                                     (2.27) 

                                                      𝛿2 = 
0.5𝑣𝑐𝑚𝑎𝑥 +𝑣𝑐𝑜 

1.8𝑤𝑐𝑟
−0.8+(0.234𝑤𝑐𝑟

−0.707−0.20)𝑓𝑐𝑐
                                           (2.28) 

𝜓 = 𝑣𝑐𝑖,𝑐𝑟/𝑣𝑐𝑚𝑎𝑥; 𝑣𝑐𝑚𝑎𝑥 (in MPa) = √𝑓𝑐′/ [0.31 + (24
𝑤𝑐𝑟

𝑎𝑔𝑔
+ 16); 𝑣𝑐𝑜 = 𝑓𝑐𝑐/30; 𝑓𝑐𝑐 (in MPa), is taken 

as the concrete cube strength; 𝑤𝑐𝑟 =𝑆𝑐𝑟𝜀𝑐1 . For conventional reinforced concrete, 𝛿𝑠 is taken as 

𝛿2, but the numerator is replaced with the shear stress 𝑣𝑐𝑖 (Equation 2.27). 

The shear strain resulting from the crack slip is estimated as 𝛾𝑠 = 𝛿𝑠/s; and resolving into x and y 

components,  

                                                        𝜀𝑥
𝑠 = -𝛾𝑠/2. sin 2𝜃                                                                   (2.29)                        

                                                        𝜀𝑦
𝑠 = 𝛾𝑠/2. sin 2𝜃                                                                   (2.30) 

                                                        𝛾𝑥𝑦
𝑠  = -𝛾𝑠/2. cos 2𝜃                                                               (2.31) 

Since the shear stresses and slip are functions of the reinforcement ratio or progressing principal 

stresses, their values also evolve under fatigue loading. The tensile stress resulting from steel fibre 
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bridging deviates by an angle 𝜃𝑓  from the direction of the principal tensile stress (𝑓𝑐1). This 

deviation angle, according to Lee et al. (2016), is estimated thus: 

                                                        𝜃𝑓 = 𝑡𝑎𝑛−1 𝛿𝑠

𝑤𝑐𝑟
                                                                      (2.32) 

2.1.3.2 Conventional Reinforcement 

Although a trilinear stress-strain relation is used to model the response of reinforcement in the 

Disturbed Stress Field Model, a bilinear stress-strain relation (elastic-perfectly plastic) is used for 

fatigue analysis. This is attributed to the fact that the behaviour of reinforcement under high cycle 

fatigue loading is usually brittle; hence increased strength due to strain hardening is avoided. 
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CHAPTER 3: FINITE ELEMENT IMPLEMENTATION 

3.1 Formulation 

The general formulation of material stiffness matrix is expressed thus: 

                                                       [𝜎] = [D] [𝜀] – [𝜎𝑜]                                                                        (3.1) 

 {𝜎} and {𝜀} are the total stress and total strain vectors due to the applied maximum fatigue load. 

(The ratio of the minimum to maximum fatigue loading is a parameter R required in a subsequent 

section.)  [𝐷] is the transformed composite stiffness matrix in which the concrete composite 

degrades progressively due to fatigue loading. 

                                                       {𝜎} = [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] (normal and shear stresses on an element)         (3.2) 

                                                       {𝜀} = [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] (corresponding strain values)                               (3.3) 

                                                       [𝐷] = [𝐷𝑐 ] + ∑ [𝐷𝑠]𝑖
𝑛
𝑖=1  + [𝐷𝑓 ]                                              (3.4) 

Prior to cracking,  

                                                       [𝐷𝑐] = 
𝐸𝑐 (1−𝐷𝑡𝑒)

1−v2  

[
 
 
 
 1 

v

 (1−𝐷𝑡𝑒)
 0

v
1

 (1−𝐷𝑡𝑒)
0

0 0
1−v

 2(1−𝐷𝑡𝑒)]
 
 
 
 

                   (3.5)       

As previously indicated, 𝐷𝑡𝑒 may be obtained using Equations 1.1 to 1.4 in Chapter 1. However, 

∆𝑓 and 𝑓𝑐
′ are replaced with the induced tensile stress and the concrete tensile strength of concrete, 

respectively. For a given element strain condition, normal stresses in the concrete may be found 

and subsequently, the principal tensile and compressive stresses and the principal strain direction 

obtained.  
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For a two-dimensional cracked state, the stiffness of the concrete with respect to the axes of 

orthotrophy, the stiffness of the steel reinforcement with respect to its direction, and the stiffness 

of the steel fibre with respect to the inclination of tensile stress due to steel fibre are all required 

(Equations 3.6 to 3.8). Subsequently, the stiffnesses are transformed back to the reference x, y axes 

(Equations 3.9 and 3.10). 

                                                      [𝐷𝑐]
′ = [

𝐸𝑐1
̅̅ ̅̅ 0 0

0 𝐸𝑐2
̅̅ ̅̅ 0

0 0 𝐺𝑐
̅̅ ̅

] for concrete                                      (3.6) 

                                                      𝐸𝑐1
̅̅ ̅̅  = 𝑓𝑐1/𝜀𝑐1; 𝐸𝑐2

̅̅ ̅̅  = 𝑓𝑐2/𝜀𝑐2; and 𝐺𝑐
̅̅ ̅ =𝐸𝑐1

̅̅ ̅̅ . 𝐸𝑐2
̅̅ ̅̅ / (𝐸𝑐1

̅̅ ̅̅ +  𝐸𝑐2
̅̅ ̅̅ ) 

                                                      [𝐷𝑠]𝑖
′= [

𝜌𝑖𝐸𝑠𝑖
̅̅ ̅̅ 0 0
0 0 0
0 0 0

] for steel reinforcement                        (3.7) 

                                                       𝐸𝑠𝑖
̅̅ ̅̅  = 𝑓𝑠,𝑖/𝜀𝑠,𝑖 

                                                      [𝐷𝑓]
′
 = [

𝜌𝑖𝐸𝑓1
̅̅ ̅̅ 0 0

0 0 0
0 0 0

] for steel fibre                                     (3.8) 

                                                       𝐸𝑓1
̅̅ ̅̅  = 𝛼𝑎𝑣𝑔𝑓𝑓/𝜀𝑐𝑓; 𝜀𝑐𝑓 = (𝜀𝑐1 + 𝜀𝑐2)/2 + [(𝜀𝑐1- 𝜀𝑐2)/2]cos2𝜃𝑓 

                                                      [𝐷𝑐 ] = [𝑇𝑐]
𝑇[𝐷𝑐]

′[𝑇𝑐 ]; [𝐷𝑓 ] = [𝑇𝑓]
𝑇
[𝐷𝑓]

′
[𝑇𝑓 ];  

                                                      [𝐷𝑠,𝑖 ] = [𝑇𝑠,𝑖]
𝑇
[𝐷𝑠,𝑖]

′
[𝑇𝑠,𝑖 ]                                                      (3.9) 

                                                      [𝑇] = [

𝑐𝑜𝑠2𝜓 𝑠𝑖𝑛2𝜓 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓

𝑠𝑖𝑛2𝜓 𝑐𝑜𝑠2𝜓 −𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓

−2𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓 2𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓 (𝑐𝑜𝑠2𝜓 − 𝑠𝑖𝑛2𝜓 )

](3.10) 

For concrete, 𝜓 = 𝜃𝑐, for steel fibre, 𝜓 = 𝜃𝑐 + 𝜃𝑓, and for a steel reinforcing bar, 𝜓 = 𝛼𝑖.  

𝜎𝑜 (Equation 3.11) is estimated as a pseudo-load using Equations 2.8 to 2.16 in Chapter 2. For a 

given stress condition and loading cycle (due to applied fatigue load), the total strain in the element 
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can be obtained. The solution approach is iterative since the secant moduli of materials are needed 

to find the strain condition {𝜀} and vice versa. 

                                                      [𝜎𝑜] = [𝐷𝑐 ] ([𝜀𝑐
𝑝] + [𝜀𝑐

𝑜] + [𝜀𝑐
𝑠] + [𝜀𝑐

𝑓𝑎𝑡
])                                (3.11) 

In the iterative process for an element at the first fatigue loading cycle, strain values are initially 

assumed. Subsequently, the principal strain values and the corresponding inclination of the 

principal tensile strain are estimated. Using the modified compatibility and constitutive equations 

illustrated previously, the net strains are estimated and subsequently, the average principal stresses 

in the concrete and the average stresses in the reinforcement are obtained with the assumption that 

fatigue damage is zero.  

Stresses at the crack are also checked and shear stress and crack slip are estimated using the 

modified equilibrium equation; however, Zo is assumed to be zero for the first cycle. From the 

crack slip, prestrains are estimated and are subtracted from the total strains in order to obtain net 

strains. Further, secant moduli for the constituent materials are estimated and the material stiffness 

matrices are obtained using Equations 3.7 to 3.10. Subsequently, the total strains are obtained and 

compared with the previous values assumed (Equation 3.12). The iterative process continues until 

the errors become minimal. The element stresses estimated are saved for subsequent loading 

cycles.  

                                                             [𝜀] = [D]-1 ([𝜎] + [𝜎𝑜])                                                    (3.12) 

For subsequent fatigue loading cycles, the saved stresses and the number of fatigue loading cycles 

considered are substituted into the corresponding fatigue damage model (described in Chapter 1) 

to estimate the required damage for the irreversible strain, the modified constitutive models, and 

the modified equilibrium equations. The described iterative process is also repeated as the fatigue 
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loading cycles are increased. Failure becomes imminent when instability due to fractured 

reinforcement or significant crushing of concrete occurs. Deformation evolution plots can be 

obtained from the material parameter values as the fatigue loading cycles are increased up to the 

point of failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 - Flow chart for the modified solution algorithm for DSFM. 
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The modified algorithm for the Disturbed Stress Field Model which accounts for fatigue damage 

in an element is shown in the flow chart in Figure 3.1. The original algorithm is void of the damage 

models (A, B, and C). In all, the analyses involve modelling the monotonic loading responses of 

structural components which exhibit some level of damage due to fatigue loading cycles.  

3.2 Failure Criterion for Reinforced Concrete and Steel-Fibre Concrete under Fatigue 

Loading 

The evolution of deformation is attributed to plain or steel fibre concrete strength and stiffness 

deterioration, irreversible strain accumulation, and steel reinforcement crack growth (A, B, and C 

in Figure 3.1). Monotonic tests of structural elements subjected to different fatigue loading cycles 

will exhibit decreasing resistance capacity as the loading cycles increase. The number of cycles at 

which the residual capacity of the element becomes equal to the fatigue load is termed the fatigue 

life of the structural element. At this instant, severe crushing of concrete or fracture of reinforcing 

bars may occur, leading to structural collapse. 

For further exemplification, the solution to the fatigue analysis of a shear panel is illustrated using 

the flow chart given in Figure 3.1 in a stepwise manner. The properties and loading parameters are 

also given. Three different pure shear fatigue loads (Figure 3.2) (3.5 MPa, 3.0 MPa, and 2.7 MPa) 

were used and the corresponding deformation evolution of the material parameters were obtained. 

The significance of the proposed analysis approach can be observed from the predicted three-

staged deformation evolution plots. In addition, the effect of fatigue loading is explicitly shown in 

all plots given in Figures 3.3 to 3.8. 
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Fig. 3.2 - Shear panel (PV19).  

𝑓𝑐
′ = 19.0 MPa;            𝜌𝑥 = 1.785% 

𝑓𝑡
′ = 1.72 MPa;            𝜌𝑦 = 0.713% 

                                                 𝜀𝑐
′  = -2.15 x 10−3;       𝑓𝑦𝑥 = 458 MPa 

                                         𝑓𝑦𝑦 = 300 MPa 

                                      𝐸𝑠 = 200000 MPa 

                                            𝑎 = 10 mm 

                                            𝑠𝑥 ≈ 50 mm         𝑑𝑏𝑥 ≈ 6.35 mm 

                                            𝑠𝑦 ≈ 50 mm         𝑑𝑏𝑦 ≈ 4.01 mm  

                                            Fatigue frequency = 5 Hz   waveform = sinusoidal  

                                            Load ratio (R) = 0 

                                           [𝜎] = [
0
0

3.0
] MPa  

Solution: 

The assumed initial total and net strains (from previous calculations) for an applied shear stress of 

3.0 MPa on the shear element in Figure 3.2, are: 

                                               {𝜀} = [
0.431
0.792
1.725

] x 10−3                            {𝜀𝑐} = [
0.566
0.659
1.716

] x 10−3 

𝝉𝒙𝒚 = 3 MPa 

Y 

X 

𝝉𝒙𝒚 
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Using the iterative process described previously, the monotonic response of the shear panel which 

includes induced stress and strain values due to the applied fatigue load (3.0 MPa) is obtained 

(without considering fatigue damage). The obtained and saved element stresses due to the 

monotonic response or at the first cycle, required in calculating damage values in subsequent 

cycles, are given thus: 

fsx  = 111 MPa; fsy = 241 MPa (both stresses are required in the fracture mechanics model) 

fc2 = -5.35 MPa; fc1 = 1.08 MPa (required in concrete damage model and irreversible strain model). 

These values are substituted into A, B, and C in Figure 3.1 to estimate the corresponding damage 

at any given fatigue loading cycle. Having accounted for the corresponding damage, the monotonic 

response is again obtained iteratively. This is repeated for given cycles until instability is reached. 

3.3 Solution for Fatigue Loading at 10000 cycles 

Figure 3.1 (Box 1) - Strain components after iterations are: 

                                                     {𝜀} = [
0.584
1.278
2.604

] x 10−3                            {𝜀𝑐} = [
0.804
1.072
2.569

] x 10−3 

The principal strains are estimated from {𝜀𝑐} (Equations 2.15 and 2.16 in Chapter 2) as: 

                                                      𝜀𝑐1 = 2.23 x 10-3              𝜀𝑐2 = -0.353 x 10-3             𝜃𝜎= 42.020    

Figure 3.1 (Box 2) - Average Stresses in Concrete and Reinforcement: 

Since the concrete is in a cracked state, Equations 1.18 to 1.19 in Chapter 1 are used for concrete 

compressive stress. The damage parameter required in the equation is obtained from Equations 1.1 

to 1.3. The fatigue prestrain value (Equation 2.12 to 2.14) is also required in estimating the concrete 

compressive stress. 

                                                         fc2 = 5.34 MPa 

                                                         fc1 = 1.07 MPa 
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Assuming perfect bond between the concrete and the steel reinforcement, the average strain in the 

concrete is equal to the average strain in the steel reinforcing bars. Hence: 

                                                         𝐸𝑠 = 200000 MPa 

                                                        𝜀𝑠𝑥 = 0.584 x 10−3 

                                                        𝜀𝑠𝑦 = 1.278 x 10−3 

                                                        𝑓𝑠𝑥 = 𝐸𝑠 𝜀𝑠𝑥 = 117 MPa (x-direction) 

                                                        𝑓𝑠𝑦 = 𝐸𝑠 𝜀𝑠𝑦 = 256 MPa (Y-direction) 

Figure 3.1 (Box 3) - Local stresses at crack:  

The local stresses are estimated from Equations 2.6 and 2.7 (neglecting the influence of steel fibre). 

In Equations 2.6 and 2.7, the reinforcement crack growth factor (Zo) is estimated from Equations 

1.10 to 1.16 (shown as C in Figure 3.1). The average reinforcement stresses are required in C in 

order to estimate the progressive crack depth; Thus: 

                                                      𝜀𝑠𝑐𝑟𝑥 = 1.033 x 10-3    ,        𝑓𝑠𝑐𝑟𝑥 = 207 MPa 

                                                      𝜀𝑠𝑐𝑟𝑦 = 1.642 x 10-3    ,        𝑓𝑠𝑐𝑟𝑦 = 300 MPa 

                                                      vci = 0.621 MPa 

Figure 3.1 (Box 4) - Crack slip strains: 

The slip at a given fatigue loading cycle can be estimated using Equation 2.27. Subsequently, the 

shear strains (in x-y directions) resulting from slip at the crack are estimated. Fatigue irreversible 

compressive strain values are also estimated in the x-y direction (Equations 2.12 to 2.14). The 

prestrain is equal to the summation of the shear strains. The pseudo-load [𝜎𝑜] is estimated from 

the obtained values of prestrain.  

The shear strain resulting from the crack slip is estimated as: 𝛾𝑠 = 𝛿𝑠/s = 0.429 x 10-3; resolving 

into x and y components, 
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                                                        𝜀𝑥
𝑠 = -𝛾𝑠/2. sin 2𝜃 = -0.213 x 10-3 

                                                        𝜀𝑦
𝑠 = 𝛾𝑠/2. sin 2𝜃 = 0.213 x 10-3 

                                                        𝛾𝑥𝑦
𝑠  = -𝛾𝑠/2. cos 2𝜃 = 0.022 x 10-3 

Inclusion of the irreversible fatigue strain is done in the manner of an offset strain: 

                                                        𝜀𝑥
𝑓𝑎𝑡

 = 𝜀𝑐,2
𝑓𝑎𝑡

/2 . (1- cos 2𝜃)= -6.09 x 10-6 

                                                        𝜀𝑦
𝑓𝑎𝑡

 = 𝜀𝑐,2
𝑓𝑎𝑡

/2 . (1+ cos 2𝜃) = -7.50 x 10-6 

                                                        𝛾𝑥𝑦
𝑓𝑎𝑡

 = - 𝜀𝑐,2
𝑓𝑎𝑡

/2 . sin 2𝜃 = 13.5 x 10-6 

Figure 3.1 (Box 5) - Material secant moduli: 

The net strain values are estimated from Equation 2.8 (for concrete). The ratio of the average stress 

to the net strain gives the secant modulus for concrete. In the case of steel reinforcement, the ratio 

of the average stress in steel reinforcement to the induced strain gives the secant modulus. 

                                                       Ec1 = 480 MPa 

                                                       Ec2 = 15124 MPa 

                                                       Gc = 466 MPa 

                                                       Esx = 200000 MPa 

                                                       Esy = 200000 MPa 

Figure 3.1 (Box 6) - Material stiffness matrices [Dc], [Ds], [D]: 

The stiffness matrices are estimated from Equations 3.4 to 3.8. The transformed composite 

stiffness matrix is obtained using Equation 3.9. The transformed composite stiffness matrix at 

10000 cycles was obtained thus: 

                                         [D] = [
7213 3367 −3256
3367 6653 −3992

−3256 −3992 3861
]   (MPa) 

Figure 3.1 (Box 7) - Determine element prestress vector [𝜎𝑜]: 
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The element prestress vector was estimated from Equation 3.11. Herein, two prestrain values were 

considered: the shear strain at crack and the fatigue irreversible strain. The summation of the 

prestrains is equal to:                           [𝜀𝑝𝑠
0 ] = [

−0.22
0.21
3.58

] x 10-3  and, 

                                                             [𝜎𝑜] =  [
−0.13
0.26

−5.35
] MPa 

Figure 3.1 (Box 8) - Determine new estimates of strain {𝜀}, {𝜀𝑐}: 

The total and net strain values are estimated using Equation 3.12. Since the results presented herein 

were obtained after convergence, the final values were also equal to the initial values. However, 

where significant variations are observed, the iteration continues as illustrated using the given 

steps. This procedure was repeated as the number of fatigue loading cycles was increased.  

At the final collapse or failure of a structural element (in this case, the shear reinforcement in the 

vertical direction failed first), instability is observed and significant deformation persists. The 

results for the three different loads used are given in Figures 3.3 to 3.8. They are presented in terms 

of the crack slip evolution, shear stress evolution, reinforcement crack depth propagation (in the 

Y-direction where failure occurred), reinforcement strain, and stress evolutions.  

The influence of fatigue load on the fatigue life is well-captured as observed in all deformation 

evolution plots (Figures 3.3 to 3.8). As the fatigue load increased, the corresponding fatigue life 

reduced, and the rates of deformation were observed to increase. In addition, the significance of 

the proposed approach stems from the fact that the profiles obtained in each case resemble the 

well-known fatigue deformation profile for reinforced concrete. Based on these observations, the 

deformation evolution within the cracked plane in reinforced concrete or steel fibre concrete can 

be obtained using the proposed approach. 
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Fig. 3.3 - Crack slip evolution. 

 

Fig. 3.4 - Shear stress evolution at crack. 

 

Fig. 3.5 - Reinforcement (Y-direction) crack growth depth. 
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Fig. 3.6 - Reinforcement (X-direction) strain evolution at crack location. 

 

Fig. 3.7 - Reinforcement (X-direction) average stress evolution. 

 

Fig. 3.8 - Localised reinforcement strain evolution (Y–direction). 
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CHAPTER 4: USE OF VecTor2 FOR FATIGUE DAMAGE ANALYSIS 

VecTor2 nonlinear finite element analysis software was modified to account for fatigue damage 

analysis using the concepts described in the preceding Chapters. The approach for modelling of a 

structural element using Formworks is well documented in VecTor2 user’s manual; however, this 

is reiterated alongside the new features for incorporating fatigue damage analysis.  

 

Figure 4.1- Formwork application window. 

4.1 Defining Concrete Materials 

The icon above (pointed in step 1) is selected to input the material and geometrical properties for 

concrete such as thickness, compressive and tensile strengths, aggregate size, average crack 

spacing, etc. (Figure 4.2). For smeared reinforced concrete, the reinforcement component 

properties can also be included; however, the reference type box is used. For fatigue analysis, 

asides from steel fibre concrete, conventional reinforced concrete structural elements should be 

modelled using discrete reinforcement and the corresponding bond properties. For steel fibre-

Step 1: Material 

properties 

Step 2: 
Reinforcement 
properties 

Step 3: Bond 

properties 

Step 4: Mesh 

structure 

Step 6: Job 

definition Step 5: load application
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reinforced concrete, other parameters for flexural strength (Model Code 2010) may be 

implemented within the smeared reinforcement properties. 

 

Figure 4.2 – Reinforced concrete materials properties dialog box. 

 

4.2 Defining Reinforcement Properties  

For high-cycle fatigue life prediction, fracture of reinforcing steel or structural collapse is assumed 

to be brittle. As such, yielding of steel reinforcement coincides with fatigue failure. The 

reinforcement properties (Figure 4.3) in the Define Reinforcement Materials dialog box are 

selected such that the strain-hardening of steel reinforcement is neglected. The ultimate yield 

strength of the selected ductile steel reinforcement should have the same value as the yield strength 

(variation of about 1% at most). Other corresponding properties such as cross-section area, 

reinforcement diameter, elastic modulus etc. are also required. 
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Fig. 4.3 – Reinforcement materials dialog box. 

4.3 Bond Types 

As described in VecTor2 user’s manual for bond stress-slip relationships between concrete and 

discrete reinforcement under different loading conditions, the reference type of steel bars, the bond 

properties, bar clear cover, number of reinforcement layers for embedded bars, etc. are selected 

(mainly embedded deformed bars) as shown in Figure 4.4. 

 

Figure 4.4 – Bond properties dialogue box. 
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4.4 Structure and Mesh Definition 

The creation of the element or concrete regions, inclusion of discrete steel reinforcement, inclusion 

of attributes such as bond type, discretization and mesh type, indication of constraints, and 

meshing, are well illustrated in VecTor2 user’s manual.  This is indicated as step 4 in Figure 4.1.  

 

Figure 4.5 – structure and mesh definition. 

4.5 Load Application under Fatigue Loading 

A fatigue waveform is shown in Figure 4.6, with the indication of the maximum and the minimum 

fatigue loads. Basically, the maximum fatigue load is required for loading in VecTor2. However, 
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the effect of the minimum fatigue loading in high-cycle fatigue is accounted for using the load 

ratio R (
𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥

). (Note: this is indicated as step 5 in Figure 4.1). 

 

Fig. 4.6 – Fatigue load wave form (sinusoidal) 

 

Figure 4.7 – Load application 

The direction of the maximum load is considered by indicating a negative sign for a vertical force 

acting downwards. In addition, a unit load is indicated at the corresponding node where the fatigue 

load acts. The concept of load factor will be discussed subsequently.  

4.6 Job Definition 

The implementation of fatigue parameters is considered within the Define job dialog box. The 

procedure for appropriate model selection is illustrated thus 

In the Define job dialog box (Figure 4.8), the first box corresponds to the job control. Herein, the 

maximum fatigue load is entered as the initial factor, while a reasonable increment (usually 0.5 

Maximum fatigue load 

(𝐹𝑚𝑎𝑥) 

Minimum fatigue load 
(𝐹𝑚𝑖𝑛) 
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or 1.0) is also typed in the box for the incremental factor. All other parameters may be selected 

as described in VecTor2 user’s manual. 

 

Figure 4.8 – Job control. 

The models to be used are obtained by clicking on the Models button in the Define job dialog box. 

Under fatigue loading for concrete material, the Hognestad’s equation or Popovics’ equation for 

compression can be used depending on the type of concrete (normal or high strength, respectively). 

For the normal strength-compression post-peak, the modified Park-Kent is used, while the 

Popovics/Mander model is used for the high strength concrete compression post-peak. Asides the 

compression pre-peak and Post-peak models, other models required are similar for normal and 

high strength concrete (default values are recommended). These are shown in Figure 4.9 for high-

strength plain concrete. 

Maximum 

fatigue load 

Incremental 

factor 



36 

 

In the case of steel fibre-reinforced concrete, Lee et al. (2011) FRC models are used. For 

compression softening, the Vecchio 1992-A (e1/e2) model is recommended, while the Advanced 

Lee (2009) model is suggested for crack stress calculation.  Further, Vecchio and Lai’s model is 

recommended for the crack slip calculation, the Lee 2010 (w/post-yield) model is suggested for 

tension stiffening, and the FIB model code 2010 is used for tension softening. The reinforcement 

models are left as default. 

 

Fig. 4.9 – Concrete models 

4.7 Defining Fatigue Loading Parameters in Job  

In the Job dialog box, select special.  

Select Considered within the tray corresponding to Concrete/Reinf. Fatigue (Figure 4.10). 

Click on Show Fatigue Parameters (Figure 4.11). The boxes are filled appropriately with values 

for frequency (in Hertz), loading ratio (R), fatigue wave-form, permissible error (0.01 default), 
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and interval of loading cycles. The number of fatigue loading cycles is increased for each analysis 

conducted. Basically, the load-deformation plot is obtained for different loading cycles. As the 

number of cycles included increases, the load capacity reduces and the deformation increases. An 

instance is reached when the load capacity is approximately equal to the fatigue load (used as the 

initial factor in Figure 4.8). The corresponding number of cycles is the fatigue life. 

 

4.10 – Fatigue damage consideration 
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Fig. 4.11 – Fatigue damage parameters 

For reduced analysis time, a reasonable interval should be chosen for the fatigue analysis. For 

example, the ratio of the selected number of cycles to the interval of loading cycles may be taken 

as 100 or 1000. 

4.8 Solved example  

 

 

 

 

Fig. 4.12 - Details of deep beam specimen. 

The solution to the fatigue life prediction of the beam given in Figure 4.12 using Formworks 

modelling procedure/VecTor2 analysis is presented. Herein, the fatigue life of the beam when 

subjected to a fatigue load of 80% of the ultimate load is considered (Figure 4.13). From an initial 

monotonic load-deformation response without fatigue damage, an ultimate load capacity value of 

245 kN was obtained from the model (Figure 4.14); hence, 80% of the capacity is equal to 196 kN. 
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This value corresponds to the maximum fatigue load to be used. The loading frequency was 

assumed to be 5 Hz, while the fatigue loading ratio and fatigue waveform were assumed to be zero 

and 0.15 (sinusoidal wave), respectively. The residual capacities which correspond to different 

fatigue loading cycles are shown in Figure 4.15. As observed, at 40 000 cycles, the loading cycles 

was approximately close to the applied fatigue load; hence, its failure instance. The mid-span 

deflection evolution is also given in Figure 4.16. Towards failure, the rate of increase was higher.  

Other results such as reinforcement stresses or strains as the loading cycles increase can also be 

obtained. As indicated initially, structural failure due to high-cycle fatigue loading will occur when 

the reinforcing bars fracture (Figure 4.17). This corresponds to the yield value of the 

reinforcement. As shown in Figure 4.17, the shear reinforcement did not fracture; rather, collapse 

was a result of the longitudinal reinforcement stress reaching the yield value (max stress in 

reinforcement at 40 000 cycles corresponds to the yield value of 480 MPa – Figure 4.12). 

 

Fig. 4.13 – Finite element mesh for beam. 
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Fig. 4.14 – Load versus mid-span deflection. 

 

Fig. 4.15 – Fatigue residual capacity. 
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Fig. 4.16 – Mid-span deflection evolution. 

 

 

 

 

 

 

 

 

 

Fig. 4.17 – Evolution of stresses in reinforcing bars (stresses shown in MPa). 
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5.0 SUMMARY AND RECOMMENDATION 

5.1 Summary 

An approach which can be used to predict the fatigue life of a reinforced concrete structural 

element using VecTor2 was illustrated. The analysis was based on the implementation of fatigue 

damage mechanisms in concrete and steel reinforcement, especially at the cracked concrete plane. 

The founding principle (for appropriately reinforced concrete elements) assumes that the fatigue 

life corresponds to the instance at which the fatigue residual capacity becomes equal to the fatigue 

load applied. This has been shown to be realistic based on validation of experimental investigations 

with finite element analysis using the proposed approach. 

5.2 Recommendation 

Depending on the complexity of the structural element and the density of embedded reinforcement, 

certain anomalies may occur while modelling. For ease, reasonable interval of fatigue loading 

cycles and load increments should be used at intervals especially at instances when the degradation 

becomes significant. The use of an elastic-perfectly plastic model for steel reinforcement is 

reiterated and strongly encouraged, as this dictates the fatigue residual capacity. Since high-cycle 

fatigue is brittle in nature, the increased strain values in steel reinforcement due to crack growth 

should not take into account the strain hardening effects. This obviously accounts for the 

substantial increase in reinforcement temperature as cracks propagate. 
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