MANUAL FOR FATIGUE ANALYSIS

OF

REINFORCED CONCRETE STRUCTURAL

ELEMENTS USING

VecTor2

Benard Isojeh

Frank Vecchio

December, 2017



Abstract

The approach for the high-cycle fatigue life prediction of a reinforced concrete structural element
using VecTor2 nonlinear finite element analysis is presented. Mechanisms governing fatigue
damage progressions are briefly discussed, and the implementation of the models that account
for these mechanisms in VecTor2 software is treated subsequently. In addition, an illustrative
solution for a single element subjected to shear fatigue loading is given. The VecTor2 nonlinear
finite element analysis software, which incorporates fatigue damage models, allows for the
prediction of the fatigue residual capacity of an element after a given number of loading cycles.
The prediction of the instance at which steel reinforcement will fracture can also be obtained

from the analyses results.
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Notation

The following symbols are used (may not be defined in the text):
a,b,c : material parameters

C: material constant =2 x 10713

Cr : frequency factor

D : damage

dp;: rebar diameter

D,: concrete stiffness matrix

D, : critical damage

Dy, : concrete tensile strength damage

D.: reinforcement stiffness matrix

D;, : concrete tensile secant modulus damage

E.: elastic modulus of concrete

E.,: secant modulus of concrete in tension

E,: secant modulus of concrete in compression

E: elastic modulus of steel reinforcement

G.: shear modulus

f : frequency

fo1: effective tensile stress of concrete

foo: effective compressive stress of concrete

fers: average tensile stress in concrete due to tension stiffening effect
fex: Normal stress in concrete in horizontal direction

fey: normal stress in concrete in vertical direction
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Vcexy- Shear stress in concrete in horizontal direction

feamax: PEAK compressive stress in concrete considering compression softening effect
fen: tensile stress due to mechanical anchorage effect of end-hooked steel-fibre
fr - tensile stress at crack due to steel fibre

fp - initial compressive strength

fs¢: tensile stress due to frictional bond behaviour of steel fibre

ftp - initial concrete tensile strength

f'.: compressive strength of concrete

fs: degraded compressive strength

fseri: local stress in reinforcement at crack

fsi: average stress in steel reinforcement

f¢: residual tensile strength of concrete

f+: degraded strength at which concrete cracks

k: post-decay parameter for stress-strain response of concrete in compression
N : number of cycles

n: curve-fitting parameter for stress-strain response of concrete in compression
n: material constant = 3

N¢ : numbers of cycles at failure

N;j: interval of cycles considered

S¢- crack spacing

T period of fatigue cycle

tq: direction coefficient (= 0.6 or 1.0)

V: Poisson’s ratio
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Vci : shear stress

Veier - Shear stress at cracked concrete plane

Vs: steel fibre volume ratio

w,, crack width

aqyg - COefficient to relate tensile stress at a crack due to steel fibres with average tensile stress
«;: inclination of reinforcement

B : material constant

B, : material constant

A: deformation

Ag, . change in strain at crack

Af' fatigue stress

& . crack slip

£.1. net tensile strain

&2 - Net compressive strain

€*. : strain corresponding to the degraded compressive strength
&scri- local strain in the reinforcement

&;. average strain in steel reinforcement

g4. irreversible fatigue strain

&y initial strain corresponding to the initial compressive strength
&1+ local strain at crack

¥, parameter for high stress level

¥, - shear strain due to crack slip

0, 0. : inclination of principal strain direction



6, angle between the reinforcement direction and the normal to the crack

p; : reinforcement ratio



CHAPTER 1: FATIGUE DAMAGE MECHANISMS

1.1 Introduction

The fatigue loading of a reinforced concrete element is well-known to result in a progressive
deterioration of concrete. Once concrete cracking occurs, reinforcement crack propagation at the
intersection with the cracked concrete planes may occur depending on the magnitude of the
induced stress in the steel reinforcement. However, robust models required for predicting the
fatigue life of these elements are not readily available. This is attributable to the complex
degradation mechanisms for steel and concrete composites inherent in any fatigue damage process

(Isojeh et al., 2017e).

To fully account for fatigue damage mechanisms, concrete integrity deterioration, irreversible
strain accumulation, and reinforcement crack growth should be considered. Herein, the mechanism
are incorporated into the constitutive, compatibility and equilibrium equations of the Disturbed
Stress Field Model (DSFM) (Vecchio, 2000) analysis algorithm to predict the fatigue residual
capacity of a structural element. The fatigue life of a structural element corresponds to the instance
when the fatigue residual capacity becomes equal to the applied fatigue load (Isojeh et al., 2017¢).

The damage mechanisms are considered subsequently.

1.1.1 Strength Degradation

Results of the investigations reported in the literature have shown that concrete strength and
stiffness reduce progressively after fatigue loading cycles have been applied (Cook and
Chindaprasirt, 1980; Schaff and Davidson, 1997; Edalatmanesh and Newhook, 2013; Isojeh et al.,

2017a). To account for this, concrete strength may be modified using a damage factor Dy..

Similarly, the stiffness or secant modulus of concrete may be modified using a corresponding



damage factor D... Models used for these cases are given thus

D= D. Exp [s (% — u)] NV (1.2)
U= (1=, log(¢ Ny T)) (1.2)
v=0.4345Cr(B,(1—R)) (1.3)

where B,=0.0661-0.0226R and y, = 2.47 x 1072,

¢ is adimensionless coefficient which is taken as 0.15 for a sinusoidal cycle (Torrenti et al., 2010;
Zhang et al., 1998), C; accounts for the loading frequency, and y, is a constant which accounts
for high stress level. From Zhang et al. (1996) on influence of loading frequency,

Cr=ab™ 9T+ ¢ (1.4)
where a, b and c are 0.249, 0.920 and 0.796 respectively, and f is the frequency of the fatigue
loading. Depending on the value of s estimated from Figure 1.1, D may be taken as Df. or De,.
D., is acritical damage value taken as 0.35 for concrete strength and 0.4 for fatigue secant modulus

(Isojeh et al., 2017a).
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Fig. 1.1 — Estimation of damage parameter s.
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1.1.2 Irreversible strain accumulation

Compressive and tensile plastic strains accumulate in concrete under fatigue loading (Holmen,
1982; Gao and Hsu, 1998; Isojeh et al., 2017b). However,the magnitude in tension is usually small,
and it is reasonable to assume it to be null. The irreversible compressive strain may be considered
as a prestrain and incorporated into the strain compatibility equation. Based on an experimental
investigation conducted on the strain evolution of concrete in compression (Isojeh et al., 2017b),

models were proposed for the irreversible fatigue strain (eg) as follows:

For 0.3Ny <N< N; (N is the number of cycles to failure and N is the fatigue loading cycles)
€1 =€ao T €q1 Tt a2 (1.5)

€40 1S the strain due to loops centerlines convergence, &4, is the strain due to the hysteresis loop

inclination, and &, is the strain due to the minimum stress at the turning point of fatigue loading.

ego = — (LXCmex) 03¢, (16)
- Dfe
€a1 = kaq (\/D—ce) (1.7)
( max R)
Eaz = T (1.8)

E is the fatigue secant modulus, k, is 1.0 for high strength concrete and 2.0 for normal strength
concrete, g is equal to —0.3 &/, R is the stress ratio, 6,4, 1S the maximum stress level, and E,. is
the static secant modulus at an instance after fatigue loading. The fatigue secant modulus can be
taken as 1.5E,..

The first stage of deformation under fatigue loading is characterized by cyclic creep. As such, the

irreversible strain for any number of cycles less than 30% of the cycles leading to failure (Ny) is



estimated as a function of the irreversible strain at 0.3, where the irreversible strain at 0.3 is
estimated using Equations 1.5 to 1.8. Hence, for N < 0.3\,

€d = €43 (L)a (1.9)

0.3Ny¢

gq3 Is the irreversible strain (g4) value at 0.3N;. The value of & (fatigue creep constant) can be

taken as 0.3. The implementation of the irreversible strain model into constitutive models for

normal and high strength concrete are discussed subsequently.

1.1.3 Reinforcement Crack Growth

From the Paris crack growth law (Paris et al., 1961), the propagation of a reinforcing bar crack, up
to a depth resulting in fatigue fracture, can be predicted using a parameter representing the stress
intensity factor range (AK). This parameter is generally expressed as a function of the stress range
(Ao), crack size (a) and a shape factor (Y) for the reinforcing bar (Paris et al., 1961; Rocha and
Bruhwiler, 2012; Herwig et al., 2008, Isojeh and Vecchio, 2016). The crack depth (a,) after a

given number of cycles can be estimated as

_ a4, a
v <1‘[Nij(C-a-n;Y".Aan.aia)]) (1.10)

where @ = (n/2)-1; C =2 x 10713; and n = 3.0 (Hirt and Nussbaumer, 2006).
a; and a, are the previous and current crack depth for the interval of cycles considered (N;;),
respectively. In order to estimate a,, using Equation 1.10, the value of a; must be known, which is

the previous crack depth (Paris et al., 1961).
An equation for the shape factor (Y) required in Equation 1.10, proposed in BS 7910 (2005) as a

function of the crack depth, is given in Equation 1.11.



_ 2fean(32)/(5))"
Y =

[0.75 +2.02 (£) +037 {1~ sin (%)}3] (1.11)

The initial crack depth (a;) expressed as a,, at the onset of fatigue loading is obtained iteratively

using Equation 1.12:

a, == (“‘—”1)2 (1.12)

T \YAG|im
r is the radius of the reinforcing bar, a is the crack depth, Agy;,, corresponds to the fatigue limit
stress at which fatigue damage will not initiate, and AK,, is the threshold stress intensity factor.
Adyim = 165 - 0.33(R X 0pay) (Amir et al., 2012). (1.13)
The crack does not propagate for stress intensity values lower than AK,;,. The AK,, value is taken
as 158 Nmm? (Farahmand and Nikbin, 2008) or as a function of the stress ratio R (Dowling, 1993).
AK,, =191 Nmm~=3/2 for R <0.17, or 222.4 (1-0.85R) Nmm=3/2 [ forR > 0.17.

where R is the stress ratio (0,,in/Fmax)-

!
~.
-

1 Undamag;ed surface

Crack initiation |

Fig. 1.2 - Crack growth on a reinforcing bar cross section.
The fractured surface area of a reinforcing bar can be assumed as shown in Figure 1.2. The crack
depth (a, ) is assumed to evolve from an initiation point up to the instant when the reserve capacity

of the reinforcement at the crack is no longer sufficient for tensile stress transfer.



From Figure 1.2, the fractured area (A(a,) ) is estimated as (Isojeh and Vecchio, 2016):
— 91" 2 .
Alay) = ST~ rsm@r(Zr - ay) (1.13)

0, = cos™1 (w) (1.14)

r

The residual area (4,..) of a reinforcing bar after crack propagation to a given number of cycles
is obtained as:

Ares = Ao - Alay) (1.15)
The reinforcement crack growth factor (Z,), referred to in other sections as the steel damage

parameter, is obtained thus:

Zy = “‘A— (1.16)

where A, is the cross-sectional area of the uncracked rebar. This is estimated for all reinforcing
bars traversing the concrete crack, provided the induced stresses are higher than the threshold value
for crack initiation.

Prior to reinforcement crack propagation, the number of cycles resulting in a localised plasticity-
crack nucleation or crack initiation may also be included using Masing’s model and the SWT
approach (Socie et al., 1984; Dowling and Thangjitham, 2000, Isojeh et al., 2017d). To account
for this, the value of the reinforcement crack growth factor is assumed to be a value of 1.0 in

Equation 1.16 until the estimated crack initiation cycles is reached.

1.2 Damage Constitutive Models for Residual Strength of Concrete

1.2.1 Normal Strength Concrete

The Hognestad stress-strain curve for normal strength is used for estimating the effective stress
of a concrete element under a monotonic loading, provided the concrete peak stress (or
compressive strength), induced effective strain, and the strain corresponding to the peak stress are

6



known. Based on the assumption of the intersection of the peak stress of a damaged concrete
specimen with the softening portion of the stress-strain envelope (Isojeh et al., 2017b), the
Hognestad parabolic equation was modified to obtain the strain corresponding to the degraded
strength and, as such, a damage constitutive model was developed for concrete under fatigue
loading. This was achieved by modifying the peak strength and the strain corresponding to the

peak stress (Figure 1.3). The modification is given thus

€ 2 2¢ f
(ﬁ) _Za o (1.17)

Stress

Fig. 1.3 - Modified Stress-strain curve for damaged concrete.
fez 1s the principal compressive stress, f, is the peak concrete compressive stress (equal to £.) , &,
(equal to /) is the compressive strain corresponding to f,,, and &, is the average net strain in the
principal compressive direction.

Based on the assumption (1 — Dy.) f, =f¢, and f,,= ¢

2
8\ 2, A-Dfy
(Sp) < (2l (1.18)
& 2 2&5
2 2 _ _
(g) -2y (1-Dp) =0 (1.19)

€, Is the total strain at peak stress intersection point with stress-strain envelope, and f? is the
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degraded concrete strength. Solving the equation for the total strain corresponding to the new
degraded strength gives

&;= €, (1+,/Dy,) (1.20)
From Figure 1.3, it can be observed that the value of &, also includes the strain offset ( &;), hence
the strain corresponding to the peak stress of the degraded concrete strength & is given as:

£, =&5 - &4 (1.21)

g = &p (1+/Dyc) - &4 (1.22)

where &, can be obtained from Equations 1.5t0 1.9, ¢, is equal to the concrete compressive strain
corresponding to the peak stress of undamaged concrete, and Dy (concrete strength damage factor)

can be estimated as described by Isojeh et al. (2017a) (also given in Equations 1.1 to 1.4).

1.2.2 High Strength Concrete

Popovics stress-strain model was modified for fatigue-damaged concrete for high strength concrete
(Isojeh et al., 2017b). The approach is similar to that for normal strength concrete. However, to
obtain the strain corresponding to the degraded strength, an iterative method is required such as
the Newton-Raphson method. For high strength plain concrete (f, = 40 MPa) (using Popovics’

equation), the fatigue constitutive equation is given in a simplified form as:

foa=fy(1 = Dpp) —cce/%) (1.23)

(n— 1)+(€c2/£p)nk

where according to Collins et al. (1997):

n = 0.80-£,/17 (in MPa) (1.24)
fi

k=0.6 — 6—’; for &,< & <0 (1.25)

k=1 for e,<¢& <0 (1.26)



CHAPTER 2: IMPLEMENTATION OF DAMAGE MODELS IN DSFM

2.1 Disturbed Stress Field Model

The capability of the Disturbed Stress Field Model (Vecchio, 2000; Vecchio, 2001) in
predicting the behaviour of reinforced concrete structures subjected to different loading
conditions is well documented (Vecchio, 2001; Vecchio et al., 2001; Facconi et al., 2014; Lee
et al., 2016). As an extension of the Modified Compression Field Theory (Vecchio and Collins,
1986), the DSFM, founded on a smeared-rotating crack model, includes the consideration of
deformation within concrete crack planes. The formulations of the DSFM can be adapted to allow
for the consideration of the damage of concrete and the corresponding crack growth on steel
reinforcement (longitudinal and transverse) intersecting a concrete crack under fatigue loading.
The modification of these models are considered subsequently. The implementation of the
fatigue damage mechanisms from Chapter 1 into the equilibrium, compatibility, and constitutive

equations are considered herein.

2.1.1 Equilibrium Condition

In Figure 2.1, the normal stresses are denoted by ox and oy and the shear stress as Txy. From the
average stresses in the element under static loading condition, the equilibrium condition based
on the superposition of concrete and steel reinforcement stresses can be expressed as shown in

Equations 2.1 to 2.3.



o> (b)

«  fe » fo le—

Fig. 2.1 — Reinforced concrete element (a) Loading conditions; (b) Mohr’s circle for average

stresses in concrete.

Ox = fox * Pxfox (2.1)
0y = fey * Pyfsy (2.2)
Ty = Vexy (2.3)

where p, and p,, are the reinforcement ratios in the x- and y- directions, respectively.

Using Mohr circle (Figure 2.1b), the stresses in the concrete composite (f¢y, fcy, and v.,,,) can be
obtained with known principal stresses (f., fz). The principal stresses are estimated from
constitutive models which are functions of concrete strength, stiffness, and induced strains. As a

result of fatigue loading, these parameters (strength and stiffness) degrade and strains accumulate;

hence, the material stresses change correspondingly.

2.1.1.1 Equilibrium of Stresses at a Crack
Under static loading, stresses in the reinforcement at crack locations are higher than the values
between cracks (average values) since the concrete tensile stress is zero at such locations. As a
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result, shear stresses also develop on the surfaces at crack locations.
Since fatigue crack propagation is a function of the stress values, its initiation tends to occur at a
reinforcement region traversing the concrete cracks where the stresses are high. From Figures

2.2(a) and 2.2(b), the general static equilibrium equations which involves steel fibre are given

thus (Lee et al., 2016)

]
<g (@)

Vel
Txy . f « 1
;A
X x
ﬂ!rwyff 4/\/9 \\( 4 f{'l
. ¢ \ :/’
— Psifsi — » psifscr
42
S > x
«
Ty
v
Uy

> Zopsif scry

Fig. 2.3 - Equilibrium conditions along crack surface after reinforcement crack propagation.

fcl = 2111 psi(fscri - fsi)- COSZQm' + (1'aavg)ffcosef (2-4)

Veier = Z? pSi(fSCTi _fsi)- COSQni Sineni - (l'aavg)ff Sinef (2-5)
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In Equations 2.4 and 2.5, (1-ag,,4) f; represents the contribution from steel fibre bridging a crack.
aqvg relates the tensile stress in steel fibre to the average principal tensile stress, while f; is a
function of the equivalent bond strength due to the mechanical anchorage of the steel fibre and the
friction bond strength of steel fibre (Lee et al., 2016).

As cracks propagate in the reinforcement traversing a concrete crack, the area of reinforcement
intersecting the crack reduces, hence resulting in lower reinforcement ratio at the crack region. To
account for the progressive reinforcement ratio reduction due to fatigue loading, Equations 2.4 and

2.5 are modified thus (Figure 2.3):

fcl = 2?psi(zofscri - fsi)- COSZQni +

(I-agpg)ff/1 — Dfc cosOy (2.6)
VUcicr = Z? Psi(Zofscri = fsi)- €058y sinby;
- (1-aavg)ff,/ 1-— ch Sian (27)

Zo and Df. are parameters representing reinforcement crack growth and plain or steel fibre

concrete strength degradation, respectively.

2.1.2 Compatibility Condition

In the Disturbed Stress Field Model, the total strain [£] in an element comprises of the net strain

[e.], plastic offset strain [ef ] elastic offset strain [2], and strain effect due to slip at crack [£7].

As indicated in Chapter 1, the irreversible strain is also considered as a prestrain (g, or [ef ;‘f]).

In the x-y direction, the total strain [¢] is
[e] = [ec] + [e] + [£€] + [] + [/ ] (2.8)

[5] = [gx' Eyr Yx ] (2-9)

12



lec] = [€cxs €y Vex | (2.10)
[e19] = (L3, e Lt vl (2.11)

From a strain transformation of the fatigue prestrain,

el ==l (1-cos 26) (2.12)
el =2 el (1+cos 20) (2.13)
voo =elst sin20 (2.14)

From Mohr’s circle of strain, the principal strains from the net strains can be estimated as:

xtEcy 1/2

(ec 1
Ec1r)€c2 = T + E [(gcx - gcy)z + chz] (2-15)
The inclination of the principal strains in the concrete, 8, is given by:
6= 1tan? [V—] (2.16)
2 Ecx—Ecy

2.1.3 Constitutive Relation

2.1.3.1 Concrete Constitutive Model

The behaviour of cracked concrete in compression and the corresponding influences of transverse
stresses and shear slip effects under static loading are well illustrated in Vecchio (2000).
Constitutive models for plain and steel fibre reinforced concrete are usually given in terms of peak
stresses and the corresponding strains at peak stresses. Fatigue constitutive models for plain
concrete have been described in Chapter 1. Depending on the steel fibre volume ratio in concrete,
the damage parameter s required in the damage model in Chapter 1 may also be obtained from

Figure 2.4.

For steel fibre concrete, the monotonic constitutive model proposed by Lee et al. (2016) was

simply modified to account for fatigue damage; thus:

13



for = feamax (1= D) [l 247)

A—1+(gc2/€p)B

where:
chmax = £ 35 fC’ (2.18)
1+0.19(—&¢1/€c2 —0.28)08
200 1200
s=AR? + BR +C @) O [s-AR:+BR-C | ®
51000 —T |
160 {[A=12.684VE + 16 687VF + 107.14
Re=1 A=31.733VE - 238Vf + 1000
800 | R=1

120 +

600 +{C=27298VE + 48 1Vf +351.43
R-1

Constants for damage parameter (s)
Constants for damage paramet:

80 T~ C=4.5716VE + 5762V + 40.571 ]
R=1 400 1 /
40 ”J/’t’j_—,———« 200 po—o b |
= 2 + +
B =2.5404Vf2 + 3 284Vf + 24.429 B=98.418VF Rf:l'f%w 154.29
0 ,  R=1 0 : : :
0 04 038 12 0 0.4 08 12
Steel fibre volume ratio (%) Steel fibre volume ratio (%)

Fig. 2.4 - Damage parameter s for steel fibre secant modulus (A) and residual strength (B).

The values for A and B in Equation 2.17 differ for the hardening and softening portion of the
stress-strain envelope. From Lee et al. (2016), the values are given thus:
For the pre-peak ascending branch,
A =B =1[1-(f)/eLE.) (2.19)
For the post-peak descending branch,
A=1+0.723(Vilr/dp)™097; B = (f /50)°064[1 + 0.882 (Vi1 /d;)~088?] (2.20)
The behaviour of cracked concrete has been considered so far. In an uncracked element, a linear
relation for concrete in tension is modified. Thus

fer =Ec(1 = Die)ecy (2.21)
where E. is the initial tangential modulus, and €., is the principal tensile strain in the concrete.

Compressive fatigue damage in an uncracked concrete element is generally considered

14



insignificant, since the induced compressive stress is usually small. D, is the damage of concrete
stiffness in tension using Equations 1.1 to 1.4 in Chapter 1. However, tensile stresses are used in

the models.

Under fatigue loading, the effect of tension stiffening reduces progressively due to the evolving
tensile strain in cracked concrete and reinforcement crack propagation. The coefficient ¢ in

Equation 2.22 accounts for the influence of steel fibre (end-hooked),

— Jtp
Jers™ T mecre (2.22)

¢;= 0.6 + (1/0.034) (lf/df)[(loovf)l'S/MO-g]; M (bond parameter) = A,/ (X dpsm), in
millimeters.
For plain concrete, the value of ¢ reduces to 0.6. The tensile stress in steel fibre concrete is
estimated as the sum of the tension stiffening effect and the stresses transmitted by steel fibre
across cracks; hence,

fe1 = fers + (L-aayg) fr cosby (2.23)
where f,, is the effective tensile stress in the concrete, €., is the tensile strain of the concrete, d,,;
is the rebar diameter, @ is the inclination of principal strain direction, «; is the inclination of
reinforcement, and n is the number of reinforcement directions. The second term in Equation 2.23

is zero in the case of conventional reinforced concrete.

The tensile stress in Equation 2.23 is required to be less or equal to the right-side of Equation 2.6.
Further, the crack spacing model proposed by Deluce et al. (2014) is used to relate crack width to
average tensile strain, while the shear slip model proposed by Vecchio and Lai (2004) is used to
estimate the slip prestrain and deviation of steel fibre tensile stress. The models are given

subsequently:
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For steel fibre concrete,

ik

S¢r (average crack spacing) = 2(ca + i—f)) ks + -~ (2.24)
where ¢, = 1.5a4,4; ki =0.4; k; = 0.25; k3 = 1 - [min(V}, 0.015)/0.015][1-(1/kf)];
ay g4 is the maximum aggregate size, given in millimeters.

Sp = ——— (2.25)

zijr;’l;:i cos*6;

Smi = Zi% cos?0; + kg a;:f (2.26)
For conventional reinforced concrete, S, = as0] /Sm;'sin 5oms

& (crack slip) = 62\/% (2.27)

0.5Vemax +Vco (2.28)

2 7 1.8w58+(0.234w;07°7 —0.20) fre

¥ = Vei.erlVemaz: Vemazx (i MPa) = \/f71 [0.31 + (24 + 16); Ve = f/30; fo (in MPa), is taken
99

as the concrete cube strength; w,, =S.,€., . For conventional reinforced concrete, J; is taken as
&5, but the numerator is replaced with the shear stress v,; (Equation 2.27).

The shear strain resulting from the crack slip is estimated as y; = §,/s; and resolving into x and y

components,
&5 = -ysl2.sin 20 (2.29)
£y = ¥,/2.5in 26 (2.30)
Yxy = -¥sl2. cos 20 (2.31)

Since the shear stresses and slip are functions of the reinforcement ratio or progressing principal

stresses, their values also evolve under fatigue loading. The tensile stress resulting from steel fibre
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bridging deviates by an angle 6 from the direction of the principal tensile stress (f¢1). This

deviation angle, according to Lee et al. (2016), is estimated thus:

6y = tan™1 2= (2.32)

Wer

2.1.3.2 Conventional Reinforcement

Although a trilinear stress-strain relation is used to model the response of reinforcement in the
Disturbed Stress Field Model, a bilinear stress-strain relation (elastic-perfectly plastic) is used for
fatigue analysis. This is attributed to the fact that the behaviour of reinforcement under high cycle

fatigue loading is usually brittle; hence increased strength due to strain hardening is avoided.
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CHAPTER 3: FINITE ELEMENT IMPLEMENTATION
3.1 Formulation
The general formulation of material stiffness matrix is expressed thus:

[0]1=[D] [¢] - [0°] (3.1)
{o} and {e} are the total stress and total strain vectors due to the applied maximum fatigue load.
(The ratio of the minimum to maximum fatigue loading is a parameter R required in a subsequent
section.) [D] is the transformed composite stiffness matrix in which the concrete composite

degrades progressively due to fatigue loading.

Ox
{o}= [Uy (normal and shear stresses on an element) (3.2)
Tyy
gx
{e}= [Ey ] (corresponding strain values) (3.3)
Vxy
[D]=[Dc]+ Xi4[Ds]i + [Df ] (3.4)
Prior to cracking,
v
1 (1-D¢e) 0
— Ec (1—D¢e) 1
[Dc] = 1_Vzt lv (1-Dte) 0 } (3:5)
1-v
0 2(1-Dge)

As previously indicated, D;, may be obtained using Equations 1.1 to 1.4 in Chapter 1. However,
Af and f, are replaced with the induced tensile stress and the concrete tensile strength of concrete,
respectively. For a given element strain condition, normal stresses in the concrete may be found
and subsequently, the principal tensile and compressive stresses and the principal strain direction

obtained.
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For a two-dimensional cracked state, the stiffness of the concrete with respect to the axes of
orthotrophy, the stiffness of the steel reinforcement with respect to its direction, and the stiffness
of the steel fibre with respect to the inclination of tensile stress due to steel fibre are all required

(Equations 3.6 to 3.8). Subsequently, the stiffnesses are transformed back to the reference x, y axes

(Equations 3.9 and 3.10).
Eq 0 O
[D.]'=| 0 E., 0][forconcrete (3.6)
0 0 G,

E_clzfcllgcl;E_cZ:fczlgcz;andG_c: cl: 02/( c1+ c2)

piEs, 0 0 _
[Dgli=| 0 0 o] for steel reinforcement (3.7)
0 0 0
Eg = fiiles,
. [piEfr 0 O _
[DF] =| 0 o offorsteel fibre (3.8)
0 0 0

m = aavgff/‘gcf; ch = (gcl + gcz)/z + [(Ecl' ECZ)/Z]COSZQf

[D.1= [T [D[T.1; [P 1 = [T7] [Df] 75 1;

T !

[Ds,i] = [Ts,i] [Ds,i] [Ts,i] (39)
cosy sin?y cosysiny
[T] = sin?y cos?y —cosysiny  |(3.10)

—2cosypsiny  2cosysinyg  (cos?P — sin?yP)
For concrete, y = 6., for steel fibre, 1 = 6, + 6¢, and for a steel reinforcing bar, ¥ = ;.

0° (Equation 3.11) is estimated as a pseudo-load using Equations 2.8 to 2.16 in Chapter 2. For a

given stress condition and loading cycle (due to applied fatigue load), the total strain in the element
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can be obtained. The solution approach is iterative since the secant moduli of materials are needed
to find the strain condition {¢} and vice versa.

[0°] = [D. ] ([2] + [£2] + [£5] + [ *]) (3.12)
In the iterative process for an element at the first fatigue loading cycle, strain values are initially
assumed. Subsequently, the principal strain values and the corresponding inclination of the
principal tensile strain are estimated. Using the modified compatibility and constitutive equations
illustrated previously, the net strains are estimated and subsequently, the average principal stresses
in the concrete and the average stresses in the reinforcement are obtained with the assumption that

fatigue damage is zero.

Stresses at the crack are also checked and shear stress and crack slip are estimated using the
modified equilibrium equation; however, Z, is assumed to be zero for the first cycle. From the
crack slip, prestrains are estimated and are subtracted from the total strains in order to obtain net
strains. Further, secant moduli for the constituent materials are estimated and the material stiffness
matrices are obtained using Equations 3.7 to 3.10. Subsequently, the total strains are obtained and
compared with the previous values assumed (Equation 3.12). The iterative process continues until
the errors become minimal. The element stresses estimated are saved for subsequent loading

cycles.

[€] = [D]* ([o] + [0°]) (3.12)

For subsequent fatigue loading cycles, the saved stresses and the number of fatigue loading cycles
considered are substituted into the corresponding fatigue damage model (described in Chapter 1)
to estimate the required damage for the irreversible strain, the modified constitutive models, and

the modified equilibrium equations. The described iterative process is also repeated as the fatigue
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loading cycles are increased. Failure becomes imminent when instability due to fractured
reinforcement or significant crushing of concrete occurs. Deformation evolution plots can be
obtained from the material parameter values as the fatigue loading cycles are increased up to the

point of failure.

Per Finite Element

Determine element

CONCRETE DAMAGE 1| componentstrains -l . .

[e2); Lez], [€2], [€F]

MODEL  MODIFIED CONSTITUTIVE MODEL!

LS=1 :

Fatigue damage model for (¢ 5 Determine :
" and concrete/reinforcement E

fe and fi | LS2L ) stresses ;
f__'_'» fcl:ch:fsi |

I— : ®)
ch (lecz)l th(Nvfcl) ! '

1 3| Determine local
E stresses at cracks

LS=1 l E i Fseri Ve E

1S>1 | | :
Ed(ch! Dfe N'fcz' &) F---- ! E 1 @

. s E Determine crack slip E

Irreversible compressive 14| strains and fatigue strain !
fatigue strain - 5, Ve, €11 gfat] !

: » Vs l€'], lee H

FRACTURE MECHANICS i Determine material i
ai (N) LS=1 i 5 secant moduli i

1 Ec,E;,G ,Eg '

, LS>1 : bl : :
aj(N, fs)  [rommmmmoosmmmmmmomomoos 2 % E C

Determine material stiffness !
matrices
[D.],[Dsl;, [D]

} v

Total Nodal Force Vector Determine element 1

(o)}

prestress vector [0°]
Element Stiffness Matrices 1

Global Stiffness Matrices Determine new '
I 8| estimates of strain ----
LS: Load stage Global Joint Displacements le], [ec]
Check Convergence

Update Stress/Strain Parameters

Total Element Strains

Fig. 3.1 - Flow chart for the modified solution algorithm for DSFM.
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The modified algorithm for the Disturbed Stress Field Model which accounts for fatigue damage
in an element is shown in the flow chart in Figure 3.1. The original algorithm is void of the damage
models (A, B, and C). In all, the analyses involve modelling the monotonic loading responses of

structural components which exhibit some level of damage due to fatigue loading cycles.

3.2 Failure Criterion for Reinforced Concrete and Steel-Fibre Concrete under Fatigue
Loading

The evolution of deformation is attributed to plain or steel fibre concrete strength and stiffness
deterioration, irreversible strain accumulation, and steel reinforcement crack growth (A, B, and C
in Figure 3.1). Monotonic tests of structural elements subjected to different fatigue loading cycles
will exhibit decreasing resistance capacity as the loading cycles increase. The number of cycles at
which the residual capacity of the element becomes equal to the fatigue load is termed the fatigue
life of the structural element. At this instant, severe crushing of concrete or fracture of reinforcing

bars may occur, leading to structural collapse.

For further exemplification, the solution to the fatigue analysis of a shear panel is illustrated using
the flow chart given in Figure 3.1 in a stepwise manner. The properties and loading parameters are
also given. Three different pure shear fatigue loads (Figure 3.2) (3.5 MPa, 3.0 MPa, and 2.7 MPa)
were used and the corresponding deformation evolution of the material parameters were obtained.
The significance of the proposed analysis approach can be observed from the predicted three-
staged deformation evolution plots. In addition, the effect of fatigue loading is explicitly shown in

all plots given in Figures 3.3 to 3.8.
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Fig. 3.2 - Shear panel (PV19).

f! =19.0 MPg; py = 1.785%

f! =172 MPa; py =0.713%

g =-215x107%  f,, =458 MPa
£,y = 300 MPa

E; = 200000 MPa

a =10 mm
Sy = 50 mm dpyx = 6.35 mm
sy, ~ 50 mm dpy = 4.01 mm

Fatigue frequency =5 Hz waveform = sinusoidal
Load ratio (R) =0

0
0
3.0

[o] = MPa

Solution:
The assumed initial total and net strains (from previous calculations) for an applied shear stress of

3.0 MPa on the shear element in Figure 3.2, are:

0.431 0.566
{e} = l0.792] X 1073 {e.} = [0.659] x 1073
1.725 1716
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Using the iterative process described previously, the monotonic response of the shear panel which
includes induced stress and strain values due to the applied fatigue load (3.0 MPa) is obtained
(without considering fatigue damage). The obtained and saved element stresses due to the
monotonic response or at the first cycle, required in calculating damage values in subsequent
cycles, are given thus:

fsx = 111 MPa; fsy = 241 MPa (both stresses are required in the fracture mechanics model)

feo =-5.35 MPa; fc1 = 1.08 MPa (required in concrete damage model and irreversible strain model).
These values are substituted into A, B, and C in Figure 3.1 to estimate the corresponding damage
at any given fatigue loading cycle. Having accounted for the corresponding damage, the monotonic

response is again obtained iteratively. This is repeated for given cycles until instability is reached.

3.3 Solution for Fatigue Loading at 10000 cycles

Figure 3.1 (Box 1) - Strain components after iterations are:

0.584 0.804
{e} = [1.278 X 1073 {e.} = [1.072 x 1073
2.604 2.569

The principal strains are estimated from {e.} (Equations 2.15 and 2.16 in Chapter 2) as:

g1 =2.23x10° £ =-0.353 x 1073 6,= 42.02°
Figure 3.1 (Box 2) - Average Stresses in Concrete and Reinforcement:
Since the concrete is in a cracked state, Equations 1.18 to 1.19 in Chapter 1 are used for concrete
compressive stress. The damage parameter required in the equation is obtained from Equations 1.1
to 1.3. The fatigue prestrain value (Equation 2.12 to 2.14) is also required in estimating the concrete
compressive stress.

fc2=5.34 MPa

fe1=1.07 MPa
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Assuming perfect bond between the concrete and the steel reinforcement, the average strain in the
concrete is equal to the average strain in the steel reinforcing bars. Hence:

E, = 200000 MPa

g5 = 0.584x1073

g5y = 1.278x 1073

fox = Eg €5, = 117 MPa (x-direction)

fsy = Es &5, = 256 MPa (Y-direction)
Figure 3.1 (Box 3) - Local stresses at crack:
The local stresses are estimated from Equations 2.6 and 2.7 (neglecting the influence of steel fibre).
In Equations 2.6 and 2.7, the reinforcement crack growth factor (Z,) is estimated from Equations
1.10 to 1.16 (shown as C in Figure 3.1). The average reinforcement stresses are required in C in

order to estimate the progressive crack depth; Thus:

Eeore =1.033%X10% | fiorp = 207 MPa
Esery = 1.642X10% | fisy =300 MPa
vei = 0.621 MPa

Figure 3.1 (Box 4) - Crack slip strains:

The slip at a given fatigue loading cycle can be estimated using Equation 2.27. Subsequently, the
shear strains (in x-y directions) resulting from slip at the crack are estimated. Fatigue irreversible
compressive strain values are also estimated in the x-y direction (Equations 2.12 to 2.14). The
prestrain is equal to the summation of the shear strains. The pseudo-load [¢°] is estimated from
the obtained values of prestrain.

The shear strain resulting from the crack slip is estimated as: y, = 8,/s = 0.429 x 1073, resolving

into X and y components,
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€5 = -y,/2. sin 26 = -0.213 x 1073
€5 = V,/2.5in 20 = 0.213 x 10°
sy = -¥sl2. cos 260 = 0.022 x 10
Inclusion of the irreversible fatigue strain is done in the manner of an offset strain:

el % = el512 . (1- cos 260)= -6.09 x 10°®

el = /%5 (1+ cos 26) = -7.50 x 10°

y c,2

it =-el5'2  sin 26 = 13.5 x 10°®
Figure 3.1 (Box 5) - Material secant moduli:
The net strain values are estimated from Equation 2.8 (for concrete). The ratio of the average stress
to the net strain gives the secant modulus for concrete. In the case of steel reinforcement, the ratio
of the average stress in steel reinforcement to the induced strain gives the secant modulus.

Ec1 =480 MPa

Ec2 = 15124 MPa

Gc = 466 MPa

Esx = 200000 MPa

Esy = 200000 MPa
Figure 3.1 (Box 6) - Material stiffness matrices [Dc], [Ds], [D]:
The stiffness matrices are estimated from Equations 3.4 to 3.8. The transformed composite
stiffness matrix is obtained using Equation 3.9. The transformed composite stiffness matrix at
10000 cycles was obtained thus:

7213 3367 —3256

[D]=]| 3367 6653 —3992| (MPa)
—-3256 —3992 3861

Figure 3.1 (Box 7) - Determine element prestress vector [c°]:

26



The element prestress vector was estimated from Equation 3.11. Herein, two prestrain values were
considered: the shear strain at crack and the fatigue irreversible strain. The summation of the

[—0.22]
prestrains is equal to: leps] = 0.21 | x 10 and,
| 3.58 |

'—0.13]
[6°]= | 0.26 [ MPa
| —5.35]

Figure 3.1 (Box 8) - Determine new estimates of strain {€}, {e.}:

The total and net strain values are estimated using Equation 3.12. Since the results presented herein
were obtained after convergence, the final values were also equal to the initial values. However,
where significant variations are observed, the iteration continues as illustrated using the given

steps. This procedure was repeated as the number of fatigue loading cycles was increased.

At the final collapse or failure of a structural element (in this case, the shear reinforcement in the
vertical direction failed first), instability is observed and significant deformation persists. The
results for the three different loads used are given in Figures 3.3 to 3.8. They are presented in terms
of the crack slip evolution, shear stress evolution, reinforcement crack depth propagation (in the

Y-direction where failure occurred), reinforcement strain, and stress evolutions.

The influence of fatigue load on the fatigue life is well-captured as observed in all deformation
evolution plots (Figures 3.3 to 3.8). As the fatigue load increased, the corresponding fatigue life
reduced, and the rates of deformation were observed to increase. In addition, the significance of
the proposed approach stems from the fact that the profiles obtained in each case resemble the
well-known fatigue deformation profile for reinforced concrete. Based on these observations, the
deformation evolution within the cracked plane in reinforced concrete or steel fibre concrete can

be obtained using the proposed approach.
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Fig. 3.3 - Crack slip evolution.
1.00
| — — — Shear fatigue (3.5 MPa)
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Fig. 3.4 - Shear stress evolution at crack.

4.0
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Fig. 3.5 - Reinforcement (Y-direction) crack growth depth.
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Reinforcement strain (x 10 %)

— — — Shear fatigue (3.5 MPa)

= + = Shear fatigue (3 MPa)

Shear fatigue (2.7 MPa)
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100 150 200
Number of cycles ( x 10%)

250 300

Fig. 3.6 - Reinforcement (X-direction) strain evolution at crack location.
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Fig. 3.7 - Reinforcement (X-direction) average stress evolution.
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Fig. 3.8 - Localised reinforcement strain evolution (Y—direction).
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CHAPTER 4: USE OF VecTor2 FOR FATIGUE DAMAGE ANALYSIS

VecTor2 nonlinear finite element analysis software was modified to account for fatigue damage

analysis using the concepts described in the preceding Chapters. The approach for modelling of a

structural element using Formworks is well documented in VecTor2 user’s manual; however, this

is reiterated alongside the new features for incorporating fatigue damage analysis.

"W FormWorks - [Warkspacel] SERESCT)
FiIe Edit View Job Structure Load Analysis Window Help - |&
Step 6: Job "
definition DS H S | aaa|la|d
S .S Al &
(FIs [E |
Step 1: Material v
properties
Step 2:
Reinforcement X
properties
Step 3: Bond
properties
Ready

Step 5: load application

4

Step 4: Mesh
structure

Figure 4.1- Formwork application window.

4.1 Defining Concrete Materials E

The icon above (pointed in step 1) is selected to input the material and geometrical properties for

concrete such as thickness, compressive and tensile strengths, aggregate size, average crack

spacing, etc. (Figure 4.2). For smeared reinforced concrete, the reinforcement component

properties can also be included; however, the reference type box is used. For fatigue analysis,

asides from steel fibre concrete, conventional reinforced concrete structural elements should be

modelled using discrete reinforcement and the corresponding bond properties. For steel fibre-
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reinforced concrete, other parameters for flexural strength (Model Code 2010) may be

implemented within the smeared reinforcement properties.

Define Material Properties [&J
b aterial Types I aterial Properties
Type: Reference Type: Reinforced Concrete j |D e ; J
uctile Steel Reinforcemenl
Add
Thickness, T: 100 Thm | J
4 Cylinder Compressive Stength, f'c: 30 MPa =
Tensile Strength, f': =0 MPa
0
Initial T angent Elastic Modulus, Ec: * 0 tPa
1
Cylinder Shain at f'c, eo: =0 me
10
Poigzon's Ratio, Mu: =0
400
Thermal Expanzion Coefficient, Ci: =0 s
M aximum Agaregate Size, a: |0 mn G0
Companent:
Density: = |0 kg/m3 200000
Thermal Diffusivity, Ke: = |0 mmz's 10
b axirum Crack Spacing... 150
perpendicular to sreinforcement, 5w ¢ 1000 TN ’D—
perpendicular to y-reinforcement, Sy 1000 i
1]
Calar
_Cor | ] T
Matenial types to be used for rectangular, quadrilateral and triangular elements only.  * Enter '0' for ¥T2 default value. 0k | Cancel |

Figure 4.2 — Reinforced concrete materials properties dialog box.

4.2 Defining Reinforcement Properties E

For high-cycle fatigue life prediction, fracture of reinforcing steel or structural collapse is assumed

to be brittle. As such, yielding of steel reinforcement coincides with fatigue failure. The

reinforcement properties (Figure 4.3) in the Define Reinforcement Materials dialog box are

selected such that the strain-hardening of steel reinforcement is neglected. The ultimate yield

strength of the selected ductile steel reinforcement should have the same value as the yield strength

(variation of about 1% at most). Other corresponding properties such as cross-section area,

reinforcement diameter, elastic modulus etc. are also required.
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[ Define Reinforcement Properties Ié]1
Reinforcement Type Reinforcement Properties
Thpe: Retersnce Type: | Ductie Steel Reinforcement ﬂ
Reinforcement 1 Add .
E::z;az:m::: % e Cross-Sectional Area: W mm2
4 Reinforcement Diameter, Db ,15— mm
% Yield Strength, Fy: 450 MPa
Ultirnate: Strength, Fu: 450 MPa
Elastic Modulus, Es: 200000 MPa
Strain Hardening Strain, esh: "ID— me
Ultirnate: Strain, eu: W me
Thermal Expansion Coefficient, Cs: * ’U— rC
Prestrain, Dep: ,D— me
Unzupported Length Ratio, b/t 0
Color -
Reinforcement material types to be used for truss elements only. Ok Cancel

Fig. 4.3 — Reinforcement materials dialog box.

4.3 Bond Types iz
As described in VecTor2 user’s manual for bond stress-slip relationships between concrete and

discrete reinforcement under different loading conditions, the reference type of steel bars, the bond
properties, bar clear cover, number of reinforcement layers for embedded bars, etc. are selected

(mainly embedded deformed bars) as shown in Figure 4.4.

Define Bond Properties [
Bond Type
Tups B0 01 [E e edded D eformed Fiebars
Add Bond Piopetties for Embedded Bars
Update Confinement Pressure Factor —
Delete Min [Bar Clear Cover, Spacingl, CMin:~ [35 mm
Mo. of Reinforcement Layers thiu Depth |2
Hocked Bar: v
0
0 0
0 f
0 0
0 1
0 1
Bond material types to be used for interior or exterio bonded elements, oK Cancel

Figure 4.4 — Bond properties dialogue box.
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4.4 Structure and Mesh Definition
The creation of the element or concrete regions, inclusion of discrete steel reinforcement, inclusion
of attributes such as bond type, discretization and mesh type, indication of constraints, and

meshing, are well illustrated in VecTor2 user’s manual. This is indicated as step 4 in Figure 4.1.

Define and Mesh Structure &

Regions l Reinforcement ] Viids & Constraints ] Create Mesh ]

| Create Mew Region |

Region 3 Update Region
Region 4

Delete Region | Delete Al |

Vertices and Edge Restraints

o) o ] o e
| 0.000. 0.000) | |

Material Layers

|N0ne ﬂ Active [ J J
|Materia| 1 Active j

Cortact Elmt Bond Type
|N0ne ﬂ Active  |v

Discretization & Mesh Type

Hybrid o Rectangles i~
Grid Supemposition . Quadrilaterals r
Division Poirt Insertion r

Mesh Paramsters Manual Owvemide
Elmt.Size X |10 mm || Do Mot Discretize Boundary [~
Eimt. Size Y I'H}— . Do Not Discretize Interior [

) Do Not Adjust Elmt. Size
Maxdimum
Aspect Ratio 1

Complexity IF

Factar

@ e N N

T

Figure 4.5 — structure and mesh definition.

4.5 Load Application under Fatigue Loading !{
A fatigue waveform is shown in Figure 4.6, with the indication of the maximum and the minimum

fatigue loads. Basically, the maximum fatigue load is required for loading in VecTor2. However,
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the effect of the minimum fatigue loading in high-cycle fatigue is accounted for using the load

ratio R (?—"“). (Note: this is indicated as step 5 in Figure 4.1).

Maximum fatigue load
(Fmax)

ue load

Fatig

Minimum fatigue load

A/(Fmin)

Time

Fig. 4.6 — Fatigue load wave form (sinusoidal)

Apply Nodal Loads

Caze node  Fu Fy Hnodes dnode dFx  dFy Tatal
1 B[ o [ [ [o [0 [ appy |1
955 0000 -1.000 1 1 0000 0000 Delete | Daone

Selection Mode

Fainter Wwindow

Figure 4.7 — Load application

The direction of the maximum load is considered by indicating a negative sign for a vertical force
acting downwards. In addition, a unit load is indicated at the corresponding node where the fatigue

load acts. The concept of load factor will be discussed subsequently.

4.6 Job Definition !’]
The implementation of fatigue parameters is considered within the Define job dialog box. The

procedure for appropriate model selection is illustrated thus

In the Define job dialog box (Figure 4.8), the first box corresponds to the job control. Herein, the
maximum fatigue load is entered as the initial factor, while a reasonable increment (usually 0.5
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or 1.0) is also typed in the box for the incremental factor. All other parameters may be selected

as described in VecTor2 user’s manual.

F ~
Define Job =X
Job Control 1 Models I P«ml\ary] Special I
Job Data Structure Data
Job file name: |VecTﬂr Structure file name: ‘Strum
Job title: |Enter Job Title Structure title: ‘Enter Structure Title
Date: |Enter Date Structure type ‘Plane Membrane (2-D) j
Loading Data
Load series ID:  |ID Starting load stage no.: |1 No. of load stages: (200
] Maximum
Activate: ¥ Case 1 [ Case2 [ Cased [ Cased r fati load
Load file name: [Case 1 [nuLe [nuLe L | atigue loa
Load case titls |Enter load case title |Enter load case title Case title |Enter load case title |E|'vter load case title
Initial factor: fzap 0 |: |: |:
Final factor: [1000 ) |: |: |:
Inc. factor: fg 5 0 |: |: |:
Load type: [Manatoric x | | Monatonic Monotonic J |I«'Ionotomc J |Fr'\onoton|c J
Repetitions |1 |1 |1 \F\ |1
Cyclic Inc. factor: |: |: |: |: \':\
Initial Load Stage |1 ‘1 |1 ‘1 |1 Incremental
Analysis Parameters faCtor
Seed file name: NULL Convergence criteria |D‘SD|5‘33"”3”13 - Weighted Avelagtj
Max. no. of terations: |50 Analysis Mode |Stat|c Nonlinear - Load Step j
[~ Dynamic Averaging factor: |06 Results files |A5C” Files Only ﬂ
Convergence limit 1.00001 Modeling format |Stand Alone j

Figure 4.8 — Job control.

The models to be used are obtained by clicking on the Models button in the Define job dialog box.
Under fatigue loading for concrete material, the Hognestad’s equation or Popovics’ equation for
compression can be used depending on the type of concrete (normal or high strength, respectively).
For the normal strength-compression post-peak, the modified Park-Kent is used, while the
Popovics/Mander model is used for the high strength concrete compression post-peak. Asides the
compression pre-peak and Post-peak models, other models required are similar for normal and
high strength concrete (default values are recommended). These are shown in Figure 4.9 for high-

strength plain concrete.
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In the case of steel fibre-reinforced concrete, Lee et al. (2011) FRC models are used. For
compression softening, the Vecchio 1992-A (el/e2) model is recommended, while the Advanced
Lee (2009) model is suggested for crack stress calculation. Further, Vecchio and Lai’s model is
recommended for the crack slip calculation, the Lee 2010 (w/post-yield) model is suggested for

tension stiffening, and the FIB model code 2010 is used for tension softening. The reinforcement

models are left as default.

r ~
Define Job &J
Job Cortrol ~ Models ]Auxlharﬂ Special I
Concrete Models
Compression Pre-Peak | Popavics (HSC) - Corfined Strength: |Kupfer / Richart ~|
Compression Post-Peak |Pupuui:s / Mander - Dilation: ‘Vanabla - Isotropic j
Compression Softening | Vecchio 1992-4 (e1/62-Form) Cracking Criterion: | Mohr-Coulomb (Stress) Ed
Crack Stress Calc: IEasl: {DSFM/MCFT) ll
Crack Widih Check: | Aga/2.5 Max Crack Width |
Tension Stiffening: |Mnd|f|ed Bentz 2003 j Crack Slip Cale: H
Tension Softening: |unear j Creep and Relaation: | Mot Considered hd
FRC Tension: [SDEM - Monotonic | Hysterstic Response: |Noniinear w/ Plastic Offsets |
Reinforcement Models Bond Models
Hysteretic Response: | Bauschinger Effect (Seckin) j
Dowel Action® || Tassios {Crack Siip) ~| Concrete Bond: |Bligehausen ~|
Buckling: | Alkaya 2012 (Modffied DhakaI-Maj
Analysis Models
Strain History: ‘Previuus Loading Considered ﬂ
Strain Rate Effects ‘C n/c S n/c ﬂ
Structural Damping: [ ot Considered = Reset Options
Geometric Monlinearity: ‘Conswdered ﬂ Basic
Cracking Spacing:  |CEE-FIP 1572 - No Blend
‘ : o sen ﬂ Advanced

Fig. 4.9 — Concrete models

4.7 Defining Fatigue Loading Parameters in Job
In the Job dialog box, select special.

Select Considered within the tray corresponding to Concrete/Reinf. Fatigue (Figure 4.10).

Click on Show Fatigue Parameters (Figure 4.11). The boxes are filled appropriately with values

for frequency (in Hertz), loading ratio (R), fatigue wave-form, permissible error (0.01 default),
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and interval of loading cycles. The number of fatigue loading cycles is increased for each analysis
conducted. Basically, the load-deformation plot is obtained for different loading cycles. As the
number of cycles included increases, the load capacity reduces and the deformation increases. An
instance is reached when the load capacity is approximately equal to the fatigue load (used as the

initial factor in Figure 4.8). The corresponding number of cycles is the fatigue life.

r
Define Job @
Job Cortrol | Models | Audiary Special |
Element Spaliing and Erosion ASR Analysis
Blemert Erosion: |Ncn Considered ASR Concrete Bpansion Mode: | Not Considered -
Mot Considerad

Siliceous

UJ}

Cover Spalling Not Considered
Fatigue
Concrete/Reirf. Fatigue -
Edit/Show Fatigue Parameters ‘
Stochastic Analysis
Stochastic Analysis Type: |Not Considered W

e

| Batlett and MacGregor 1996

[Mirza et al. 1978

| Hybrid Mirza + CSA

|No‘,'.'ak and Szerzen 2003

[Mirza et al. 1579

Ll b | e el ]1 WWWP_JWW]«_

[Mirza et al. 1978

imm
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4.10 — Fatigue damage consideration
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B ' Fatigue Analysis Parameters

Fatigue Loading Cydles:

Fatigue Loading Frequency (Hz):

Fatigue Loading Ratio:

Fatigue Wave-Form:

Permissible Error (10-8):

Interval of Loading Cydes:

Cancel |

1

1

Done

| 77977 !

Fig. 4.11 — Fatigue damage parameters

For reduced analysis time, a reasonable interval should be chosen for the fatigue analysis. For

example, the ratio of the selected number of cycles to the interval of loading cycles may be taken

as 100 or 1000.

4.8 Solved example
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|_——2-10Mm

Beam with 0.2% shear reinforcement ratio

Fig. 4.12 - Details of deep beam specimen.

Section X-X

D4- fy = 610MPa
10M- f, = 480 MPa

f. =59 MPa
£l =0.002

ff’ =2.3 MPa

The solution to the fatigue life prediction of the beam given in Figure 4.12 using Formworks

modelling procedure/VecTor2 analysis is presented. Herein, the fatigue life of the beam when

subjected to a fatigue load of 80% of the ultimate load is considered (Figure 4.13). From an initial

monotonic load-deformation response without fatigue damage, an ultimate load capacity value of

245 kN was obtained from the model (Figure 4.14); hence, 80% of the capacity is equal to 196 kN.
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This value corresponds to the maximum fatigue load to be used. The loading frequency was
assumed to be 5 Hz, while the fatigue loading ratio and fatigue waveform were assumed to be zero
and 0.15 (sinusoidal wave), respectively. The residual capacities which correspond to different
fatigue loading cycles are shown in Figure 4.15. As observed, at 40 000 cycles, the loading cycles
was approximately close to the applied fatigue load; hence, its failure instance. The mid-span

deflection evolution is also given in Figure 4.16. Towards failure, the rate of increase was higher.

Other results such as reinforcement stresses or strains as the loading cycles increase can also be
obtained. As indicated initially, structural failure due to high-cycle fatigue loading will occur when
the reinforcing bars fracture (Figure 4.17). This corresponds to the yield value of the
reinforcement. As shown in Figure 4.17, the shear reinforcement did not fracture; rather, collapse
was a result of the longitudinal reinforcement stress reaching the yield value (max stress in

reinforcement at 40 000 cycles corresponds to the yield value of 480 MPa — Figure 4.12).

Fig. 4.13 — Finite element mesh for beam.
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Fig. 4.15 — Fatigue residual capacity.
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5.0 SUMMARY AND RECOMMENDATION

5.1 Summary

An approach which can be used to predict the fatigue life of a reinforced concrete structural
element using VecTor2 was illustrated. The analysis was based on the implementation of fatigue
damage mechanisms in concrete and steel reinforcement, especially at the cracked concrete plane.
The founding principle (for appropriately reinforced concrete elements) assumes that the fatigue
life corresponds to the instance at which the fatigue residual capacity becomes equal to the fatigue
load applied. This has been shown to be realistic based on validation of experimental investigations

with finite element analysis using the proposed approach.

5.2 Recommendation

Depending on the complexity of the structural element and the density of embedded reinforcement,
certain anomalies may occur while modelling. For ease, reasonable interval of fatigue loading
cycles and load increments should be used at intervals especially at instances when the degradation
becomes significant. The use of an elastic-perfectly plastic model for steel reinforcement is
reiterated and strongly encouraged, as this dictates the fatigue residual capacity. Since high-cycle
fatigue is brittle in nature, the increased strain values in steel reinforcement due to crack growth
should not take into account the strain hardening effects. This obviously accounts for the

substantial increase in reinforcement temperature as cracks propagate.
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